--- inference: false license: mit language: - en metrics: - exact_match - f1 - bertscore pipeline_tag: text-classification tags: - question-answering - evaluation - text datasets: - zli12321/pedants_qa_evaluation_bench --- # QA-Evaluation-Metrics 📊 [![PyPI version qa-metrics](https://img.shields.io/pypi/v/qa-metrics.svg)](https://pypi.org/project/qa-metrics/) [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1Ke23KIeHFdPWad0BModmcWKZ6jSbF5nI?usp=sharing) > A fast and lightweight Python package for evaluating question-answering models and prompting of black-box and open-source large language models. > `pip install qa-metrics` is all you need! ## 🎉 Latest Updates - **Version 0.2.19 Released!** - Paper accepted to EMNLP 2024 Findings! 🎓 - Enhanced PEDANTS with multi-pipeline support and improved edge case handling - Added support for OpenAI GPT-series and Claude Series models (OpenAI version > 1.0) - Integrated support for open-source models (LLaMA-2-70B-chat, LLaVA-1.5, etc.) via [deepinfra](https://deepinfra.com/models) - Introduced trained tiny-bert for QA evaluation (18MB model size) - Added direct Huggingface model download support for TransformerMatcher ## 🚀 Quick Start ## Table of Contents * 1. [Normalized Exact Match](#em) * 2. [Token F1 Score](#f1) * 3. [PEDANTS](#pedants) * 4. [Finetuned Neural Matching](#neural) * 5. [Prompting LLM](#llm) ### Prerequisites - Python >= 3.6 - openai >= 1.0 ### Installation ```bash pip install qa-metrics ``` ## 💡 Features Our package offers six QA evaluation methods with varying strengths: | Method | Best For | Cost | Correlation with Human Judgment | |--------|----------|------|--------------------------------| | Normalized Exact Match | Short-form QA (NQ-OPEN, HotpotQA, etc.) | Free | Good | | PEDANTS | Both short & medium-form QA | Free | Very High | | [Neural Evaluation](https://huggingface.co/zli12321/answer_equivalence_tiny_bert) | Both short & long-form QA | Free | High | | [Open Source LLM Evaluation](https://huggingface.co/zli12321/prometheus2-2B) | All QA types | Free | High | | Black-box LLM Evaluation | All QA types | Paid | Highest | ## 📖 Documentation ### 1. Normalized Exact Match #### Method: `em_match` **Parameters** - `reference_answer` (list of str): A list of gold (correct) answers to the question - `candidate_answer` (str): The answer provided by a candidate that needs to be evaluated **Returns** - `boolean`: True if there are any exact normalized matches between gold and candidate answers ```python from qa_metrics.em import em_match reference_answer = ["The Frog Prince", "The Princess and the Frog"] candidate_answer = "The movie \"The Princess and the Frog\" is loosely based off the Brother Grimm's \"Iron Henry\"" match_result = em_match(reference_answer, candidate_answer) ``` ### 2. F1 Score #### Method: `f1_score_with_precision_recall` **Parameters** - `reference_answer` (str): A gold (correct) answer to the question - `candidate_answer` (str): The answer provided by a candidate that needs to be evaluated **Returns** - `dictionary`: Contains the F1 score, precision, and recall between a gold and candidate answer #### Method: `f1_match` **Parameters** - `reference_answer` (list of str): List of gold answers - `candidate_answer` (str): Candidate answer to evaluate - `threshold` (float): F1 score threshold for considering a match (default: 0.5) **Returns** - `boolean`: True if F1 score exceeds threshold for any gold answer ```python from qa_metrics.f1 import f1_match, f1_score_with_precision_recall f1_stats = f1_score_with_precision_recall(reference_answer[0], candidate_answer) match_result = f1_match(reference_answer, candidate_answer, threshold=0.5) ``` ### 3. PEDANTS #### Method: `get_score` **Parameters** - `reference_answer` (str): A Gold answer - `candidate_answer` (str): Candidate answer to evaluate - `question` (str): The question being evaluated **Returns** - `float`: The similarity score between two strings (0 to 1) #### Method: `get_highest_score` **Parameters** - `reference_answer` (list of str): List of gold answers - `candidate_answer` (str): Candidate answer to evaluate - `question` (str): The question being evaluated **Returns** - `dictionary`: Contains the gold answer and candidate answer pair with highest matching score #### Method: `get_scores` **Parameters** - `reference_answer` (list of str): List of gold answers - `candidate_answer` (str): Candidate answer to evaluate - `question` (str): The question being evaluated **Returns** - `dictionary`: Contains matching scores for all gold answer and candidate answer pairs #### Method: `evaluate` **Parameters** - `reference_answer` (list of str): List of gold answers - `candidate_answer` (str): Candidate answer to evaluate - `question` (str): The question being evaluated **Returns** - `boolean`: True if candidate answer matches any gold answer #### Method: `get_question_type` **Parameters** - `reference_answer` (list of str): List of gold answers - `question` (str): The question being evaluated **Returns** - `list`: The type of the question (what, who, when, how, why, which, where) #### Method: `get_judgement_type` **Parameters** - `reference_answer` (list of str): List of gold answers - `candidate_answer` (str): Candidate answer to evaluate - `question` (str): The question being evaluated **Returns** - `list`: A list revised rules applicable to judge answer correctness ```python from qa_metrics.pedant import PEDANT pedant = PEDANT() scores = pedant.get_scores(reference_answer, candidate_answer, question) match_result = pedant.evaluate(reference_answer, candidate_answer, question) ``` ### 4. Transformer Neural Evaluation #### Method: `get_score` **Parameters** - `reference_answer` (str): A Gold answer - `candidate_answer` (str): Candidate answer to evaluate - `question` (str): The question being evaluated **Returns** - `float`: The similarity score between two strings (0 to 1) #### Method: `get_highest_score` **Parameters** - `reference_answer` (list of str): List of gold answers - `candidate_answer` (str): Candidate answer to evaluate - `question` (str): The question being evaluated **Returns** - `dictionary`: Contains the gold answer and candidate answer pair with highest matching score #### Method: `get_scores` **Parameters** - `reference_answer` (list of str): List of gold answers - `candidate_answer` (str): Candidate answer to evaluate - `question` (str): The question being evaluated **Returns** - `dictionary`: Contains matching scores for all gold answer and candidate answer pairs #### Method: `transformer_match` **Parameters** - `reference_answer` (list of str): List of gold answers - `candidate_answer` (str): Candidate answer to evaluate - `question` (str): The question being evaluated **Returns** - `boolean`: True if transformer model considers candidate answer equivalent to any gold answer ```python from qa_metrics.transformerMatcher import TransformerMatcher ### supports `zli12321/roberta-large-qa-evaluator`, `zli12321/answer_equivalence_bert`, `zli12321/answer_equivalence_distilbert`, `zli12321/answer_equivalence_roberta`, `zli12321/answer_equivalence_distilroberta` tm = TransformerMatcher("zli12321/answer_equivalence_tiny_bert") match_result = tm.transformer_match(reference_answer, candidate_answer, question) ``` ### 5. LLM Integration #### Method: `prompt_gpt` **Parameters** - `prompt` (str): The input prompt text - `model_engine` (str): OpenAI model to use (e.g., 'gpt-3.5-turbo') - `temperature` (float): Controls randomness (0-1) - `max_tokens` (int): Maximum tokens in response ```python from qa_metrics.prompt_llm import CloseLLM model = CloseLLM() model.set_openai_api_key(YOUR_OPENAI_KEY) result = model.prompt_gpt(prompt=prompt, model_engine='gpt-3.5-turbo') ``` #### Method: `prompt_claude` **Parameters** - `prompt` (str): The input prompt text - `model_engine` (str): Claude model to use - `anthropic_version` (str): API version - `max_tokens_to_sample` (int): Maximum tokens in response - `temperature` (float): Controls randomness (0-1) ```python model = CloseLLM() model.set_anthropic_api_key(YOUR_ANTHROPIC_KEY) result = model.prompt_claude(prompt=prompt, model_engine='claude-v1') ``` #### Method: `prompt` **Parameters** - `message` (str): The input message text - `model_engine` (str): Model to use - `temperature` (float): Controls randomness (0-1) - `max_tokens` (int): Maximum tokens in response ```python from qa_metrics.prompt_open_llm import OpenLLM model = OpenLLM() model.set_deepinfra_key(YOUR_DEEPINFRA_KEY) result = model.prompt(message=prompt, model_engine='mistralai/Mixtral-8x7B-Instruct-v0.1') ``` ## 🤗 Model Hub Our fine-tuned models are available on Huggingface: - [BERT](https://huggingface.co/Zongxia/answer_equivalence_bert) - [DistilRoBERTa](https://huggingface.co/Zongxia/answer_equivalence_distilroberta) - [DistilBERT](https://huggingface.co/Zongxia/answer_equivalence_distilbert) - [RoBERTa](https://huggingface.co/Zongxia/answer_equivalence_roberta) - [Tiny-BERT](https://huggingface.co/Zongxia/answer_equivalence_tiny_bert) - [RoBERTa-Large](https://huggingface.co/Zongxia/answer_equivalence_roberta-large) ## 📚 Resources - [Full Paper](https://arxiv.org/abs/2402.11161) - [Dataset Repository](https://github.com/zli12321/Answer_Equivalence_Dataset.git) - [Supported Models on Deepinfra](https://deepinfra.com/models) ## 📄 Citation ```bibtex @inproceedings{li-etal-2024-pedants, title = "{PEDANTS}: Cheap but Effective and Interpretable Answer Equivalence", author = "Li, Zongxia and Mondal, Ishani and Nghiem, Huy and Liang, Yijun and Boyd-Graber, Jordan Lee", editor = "Al-Onaizan, Yaser and Bansal, Mohit and Chen, Yun-Nung", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024", month = nov, year = "2024", address = "Miami, Florida, USA", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.findings-emnlp.548/", doi = "10.18653/v1/2024.findings-emnlp.548", pages = "9373--9398", abstract = "Question answering (QA) can only make progress if we know if an answer is correct, but current answer correctness (AC) metrics struggle with verbose, free-form answers from large language models (LLMs). There are two challenges with current short-form QA evaluations: a lack of diverse styles of evaluation data and an over-reliance on expensive and slow LLMs. LLM-based scorers correlate better with humans, but this expensive task has only been tested on limited QA datasets. We rectify these issues by providing rubrics and datasets for evaluating machine QA adopted from the Trivia community. We also propose an efficient, and interpretable QA evaluation that is more stable than an exact match and neural methods (BERTScore)." } ``` ## 📝 License This project is licensed under the [MIT License](LICENSE.md). ## 📬 Contact For questions or comments, please contact: zli12321@umd.edu