---
base_model: sentence-transformers/all-MiniLM-L6-v2
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:200
- loss:SoftmaxLoss
widget:
- source_sentence: ' I am anxious about relying on AI for critical decisions,'
sentences:
- ' I worry about the ethical implications of using AI,'
- ' AIs data cleaning quality is impressive,'
- ' The rise of AI creates uncertainty in job markets,'
- source_sentence: ' Im apprehensive about having AI manage sensitive tasks for me,'
sentences:
- ' AIs quality in image recognition is superb,'
- ' AI might replace jobs in data entry and processing,'
- ' AI tools improve my efficiency in complex computations,'
- source_sentence: ' I am hesitant to rely on AI for financial advice,'
sentences:
- ' AI aids in streamlining industry-specific tasks,'
- ' AI can imitate human decision-making processes,'
- ' The high quality of AI in voice synthesis is staggering,'
- source_sentence: ' AI systems modify their processes based on feedback,'
sentences:
- ' AI can hold a relevant and coherent conversation,'
- ' Relying on AI for critical thinking tasks makes me nervous,'
- ' AI ensures high quality in predictive analytics,'
- source_sentence: ' AI simplifies complex data analysis tasks for me,'
sentences:
- ' AI optimizes content strategy through data analysis,'
- ' Im apprehensive about having AI manage sensitive tasks for me,'
- ' AI adapts to varying user inputs accurately,'
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("zihoo/all-MiniLM-L6-v2-AINLI")
# Run inference
sentences = [
' AI simplifies complex data analysis tasks for me,',
' AI optimizes content strategy through data analysis,',
' AI adapts to varying user inputs accurately,',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 200 training samples
* Columns: sentence1
, sentence2
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------|
| type | string | string | int |
| details |
AI can simulate human emotions in interactions,
| AI-generated voices sound remarkably human,
| 1
|
| AI can adjust to user preferences over time,
| AIs precision in data analysis is highly reliable,
| 1
|
| AI consistently provides reliable recommendations,
| AI tools support me in delivering better results,
| 0
|
* Loss: [SoftmaxLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
### Training Hyperparameters
#### All Hyperparameters