Add new SentenceTransformer model.
Browse files- README.md +38 -33
- model.safetensors +1 -1
README.md
CHANGED
@@ -12,31 +12,31 @@ tags:
|
|
12 |
- dataset_size:200
|
13 |
- loss:SoftmaxLoss
|
14 |
widget:
|
15 |
-
- source_sentence: ' I
|
16 |
sentences:
|
17 |
-
- '
|
18 |
-
- '
|
19 |
-
- '
|
20 |
-
- source_sentence: '
|
21 |
sentences:
|
22 |
-
- '
|
23 |
-
- ' AI
|
24 |
-
- ' AI
|
25 |
-
- source_sentence: '
|
26 |
sentences:
|
27 |
-
- '
|
28 |
-
- '
|
29 |
-
- ' The
|
30 |
-
- source_sentence: ' AI
|
31 |
sentences:
|
32 |
-
- ' AI
|
33 |
-
- '
|
34 |
-
- ' AI
|
35 |
-
- source_sentence: ' AI
|
36 |
sentences:
|
|
|
|
|
37 |
- ' AI optimizes content strategy through data analysis,'
|
38 |
-
- ' Im apprehensive about having AI manage sensitive tasks for me,'
|
39 |
-
- ' AI adapts to varying user inputs accurately,'
|
40 |
---
|
41 |
|
42 |
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
@@ -89,9 +89,9 @@ from sentence_transformers import SentenceTransformer
|
|
89 |
model = SentenceTransformer("zihoo/all-MiniLM-L6-v2-AINLI")
|
90 |
# Run inference
|
91 |
sentences = [
|
92 |
-
' AI
|
|
|
93 |
' AI optimizes content strategy through data analysis,',
|
94 |
-
' AI adapts to varying user inputs accurately,',
|
95 |
]
|
96 |
embeddings = model.encode(sentences)
|
97 |
print(embeddings.shape)
|
@@ -147,21 +147,26 @@ You can finetune this model on your own dataset.
|
|
147 |
|
148 |
|
149 |
* Size: 200 training samples
|
150 |
-
* Columns: <code>
|
151 |
* Approximate statistics based on the first 1000 samples:
|
152 |
-
| |
|
153 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------|
|
154 |
| type | string | string | int |
|
155 |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.91 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 11.91 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>0: ~9.00%</li><li>1: ~69.00%</li><li>2: ~22.00%</li></ul> |
|
156 |
* Samples:
|
157 |
-
|
|
158 |
-
|
159 |
-
| <code>
|
160 |
-
| <code> AI can
|
161 |
-
| <code> AI
|
162 |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
|
163 |
|
164 |
### Training Hyperparameters
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
#### All Hyperparameters
|
167 |
<details><summary>Click to expand</summary>
|
@@ -170,8 +175,8 @@ You can finetune this model on your own dataset.
|
|
170 |
- `do_predict`: False
|
171 |
- `eval_strategy`: no
|
172 |
- `prediction_loss_only`: True
|
173 |
-
- `per_device_train_batch_size`:
|
174 |
-
- `per_device_eval_batch_size`:
|
175 |
- `per_gpu_train_batch_size`: None
|
176 |
- `per_gpu_eval_batch_size`: None
|
177 |
- `gradient_accumulation_steps`: 1
|
@@ -181,8 +186,8 @@ You can finetune this model on your own dataset.
|
|
181 |
- `adam_beta1`: 0.9
|
182 |
- `adam_beta2`: 0.999
|
183 |
- `adam_epsilon`: 1e-08
|
184 |
-
- `max_grad_norm`: 1
|
185 |
-
- `num_train_epochs`: 3
|
186 |
- `max_steps`: -1
|
187 |
- `lr_scheduler_type`: linear
|
188 |
- `lr_scheduler_kwargs`: {}
|
@@ -274,7 +279,7 @@ You can finetune this model on your own dataset.
|
|
274 |
- `batch_eval_metrics`: False
|
275 |
- `eval_on_start`: False
|
276 |
- `batch_sampler`: batch_sampler
|
277 |
-
- `multi_dataset_batch_sampler`:
|
278 |
|
279 |
</details>
|
280 |
|
|
|
12 |
- dataset_size:200
|
13 |
- loss:SoftmaxLoss
|
14 |
widget:
|
15 |
+
- source_sentence: ' I worry that AI will eventually replace my job,'
|
16 |
sentences:
|
17 |
+
- ' AI might affect the stability of job markets globally,'
|
18 |
+
- ' AI can mimic human facial expressions,'
|
19 |
+
- ' AIs flexibility in updating its models is remarkable,'
|
20 |
+
- source_sentence: ' AIs efficiency in data mining is impressive,'
|
21 |
sentences:
|
22 |
+
- ' AI could reduce the need for human intervention in many fields,'
|
23 |
+
- ' AI will possibly replace customer service jobs,'
|
24 |
+
- ' AI systems modify their processes based on feedback,'
|
25 |
+
- source_sentence: ' AI can adjust to user preferences over time,'
|
26 |
sentences:
|
27 |
+
- ' AI can simulate human emotions in interactions,'
|
28 |
+
- ' AIs precision in data analysis is highly reliable,'
|
29 |
+
- ' The rapid growth of AI makes me uneasy,'
|
30 |
+
- source_sentence: ' AI tools optimize my workflow, making tasks simpler,'
|
31 |
sentences:
|
32 |
+
- ' AI tools aid significantly in project execution,'
|
33 |
+
- ' AI can carry on meaningful conversations over the phone,'
|
34 |
+
- ' AI helps me make better decisions through data analysis,'
|
35 |
+
- source_sentence: ' AI effectively enhances my problem-solving strategies,'
|
36 |
sentences:
|
37 |
+
- ' AI consistently provides reliable recommendations,'
|
38 |
+
- ' AI tools support me in delivering better results,'
|
39 |
- ' AI optimizes content strategy through data analysis,'
|
|
|
|
|
40 |
---
|
41 |
|
42 |
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
|
|
89 |
model = SentenceTransformer("zihoo/all-MiniLM-L6-v2-AINLI")
|
90 |
# Run inference
|
91 |
sentences = [
|
92 |
+
' AI effectively enhances my problem-solving strategies,',
|
93 |
+
' AI consistently provides reliable recommendations,',
|
94 |
' AI optimizes content strategy through data analysis,',
|
|
|
95 |
]
|
96 |
embeddings = model.encode(sentences)
|
97 |
print(embeddings.shape)
|
|
|
147 |
|
148 |
|
149 |
* Size: 200 training samples
|
150 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
151 |
* Approximate statistics based on the first 1000 samples:
|
152 |
+
| | sentence_0 | sentence_1 | label |
|
153 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------|
|
154 |
| type | string | string | int |
|
155 |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.91 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 11.91 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>0: ~9.00%</li><li>1: ~69.00%</li><li>2: ~22.00%</li></ul> |
|
156 |
* Samples:
|
157 |
+
| sentence_0 | sentence_1 | label |
|
158 |
+
|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------|
|
159 |
+
| <code> AI systems autonomously integrate user feedback for improvements</code> | <code> AI systems autonomously integrate user feedback for improvements</code> | <code>0</code> |
|
160 |
+
| <code> AI can exhibit empathy in certain contexts,</code> | <code> The quality of AI in customer feedback analysis is notable,</code> | <code>2</code> |
|
161 |
+
| <code> I feel stressed about using AI in professional settings,</code> | <code> I feel tense dealing with advanced AI technologies,</code> | <code>0</code> |
|
162 |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
|
163 |
|
164 |
### Training Hyperparameters
|
165 |
+
#### Non-Default Hyperparameters
|
166 |
+
|
167 |
+
- `per_device_train_batch_size`: 64
|
168 |
+
- `per_device_eval_batch_size`: 64
|
169 |
+
- `multi_dataset_batch_sampler`: round_robin
|
170 |
|
171 |
#### All Hyperparameters
|
172 |
<details><summary>Click to expand</summary>
|
|
|
175 |
- `do_predict`: False
|
176 |
- `eval_strategy`: no
|
177 |
- `prediction_loss_only`: True
|
178 |
+
- `per_device_train_batch_size`: 64
|
179 |
+
- `per_device_eval_batch_size`: 64
|
180 |
- `per_gpu_train_batch_size`: None
|
181 |
- `per_gpu_eval_batch_size`: None
|
182 |
- `gradient_accumulation_steps`: 1
|
|
|
186 |
- `adam_beta1`: 0.9
|
187 |
- `adam_beta2`: 0.999
|
188 |
- `adam_epsilon`: 1e-08
|
189 |
+
- `max_grad_norm`: 1
|
190 |
+
- `num_train_epochs`: 3
|
191 |
- `max_steps`: -1
|
192 |
- `lr_scheduler_type`: linear
|
193 |
- `lr_scheduler_kwargs`: {}
|
|
|
279 |
- `batch_eval_metrics`: False
|
280 |
- `eval_on_start`: False
|
281 |
- `batch_sampler`: batch_sampler
|
282 |
+
- `multi_dataset_batch_sampler`: round_robin
|
283 |
|
284 |
</details>
|
285 |
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 90864192
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d11d89d38b73dc9bbee44dd082835092283a177546e02e2ff87748ef6863ac0
|
3 |
size 90864192
|