zihoo commited on
Commit
f4c1d7a
·
verified ·
1 Parent(s): 2a106f6

Add new SentenceTransformer model.

Browse files
Files changed (2) hide show
  1. README.md +38 -33
  2. model.safetensors +1 -1
README.md CHANGED
@@ -12,31 +12,31 @@ tags:
12
  - dataset_size:200
13
  - loss:SoftmaxLoss
14
  widget:
15
- - source_sentence: ' I am anxious about relying on AI for critical decisions,'
16
  sentences:
17
- - ' I worry about the ethical implications of using AI,'
18
- - ' AIs data cleaning quality is impressive,'
19
- - ' The rise of AI creates uncertainty in job markets,'
20
- - source_sentence: ' Im apprehensive about having AI manage sensitive tasks for me,'
21
  sentences:
22
- - ' AIs quality in image recognition is superb,'
23
- - ' AI might replace jobs in data entry and processing,'
24
- - ' AI tools improve my efficiency in complex computations,'
25
- - source_sentence: ' I am hesitant to rely on AI for financial advice,'
26
  sentences:
27
- - ' AI aids in streamlining industry-specific tasks,'
28
- - ' AI can imitate human decision-making processes,'
29
- - ' The high quality of AI in voice synthesis is staggering,'
30
- - source_sentence: ' AI systems modify their processes based on feedback,'
31
  sentences:
32
- - ' AI can hold a relevant and coherent conversation,'
33
- - ' Relying on AI for critical thinking tasks makes me nervous,'
34
- - ' AI ensures high quality in predictive analytics,'
35
- - source_sentence: ' AI simplifies complex data analysis tasks for me,'
36
  sentences:
 
 
37
  - ' AI optimizes content strategy through data analysis,'
38
- - ' Im apprehensive about having AI manage sensitive tasks for me,'
39
- - ' AI adapts to varying user inputs accurately,'
40
  ---
41
 
42
  # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
@@ -89,9 +89,9 @@ from sentence_transformers import SentenceTransformer
89
  model = SentenceTransformer("zihoo/all-MiniLM-L6-v2-AINLI")
90
  # Run inference
91
  sentences = [
92
- ' AI simplifies complex data analysis tasks for me,',
 
93
  ' AI optimizes content strategy through data analysis,',
94
- ' AI adapts to varying user inputs accurately,',
95
  ]
96
  embeddings = model.encode(sentences)
97
  print(embeddings.shape)
@@ -147,21 +147,26 @@ You can finetune this model on your own dataset.
147
 
148
 
149
  * Size: 200 training samples
150
- * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
151
  * Approximate statistics based on the first 1000 samples:
152
- | | sentence1 | sentence2 | label |
153
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------|
154
  | type | string | string | int |
155
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.91 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 11.91 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>0: ~9.00%</li><li>1: ~69.00%</li><li>2: ~22.00%</li></ul> |
156
  * Samples:
157
- | sentence1 | sentence2 | label |
158
- |:------------------------------------------------------------------|:------------------------------------------------------------------|:---------------|
159
- | <code> AI can simulate human emotions in interactions,</code> | <code> AI-generated voices sound remarkably human,</code> | <code>1</code> |
160
- | <code> AI can adjust to user preferences over time,</code> | <code> AIs precision in data analysis is highly reliable,</code> | <code>1</code> |
161
- | <code> AI consistently provides reliable recommendations,</code> | <code> AI tools support me in delivering better results,</code> | <code>0</code> |
162
  * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
163
 
164
  ### Training Hyperparameters
 
 
 
 
 
165
 
166
  #### All Hyperparameters
167
  <details><summary>Click to expand</summary>
@@ -170,8 +175,8 @@ You can finetune this model on your own dataset.
170
  - `do_predict`: False
171
  - `eval_strategy`: no
172
  - `prediction_loss_only`: True
173
- - `per_device_train_batch_size`: 8
174
- - `per_device_eval_batch_size`: 8
175
  - `per_gpu_train_batch_size`: None
176
  - `per_gpu_eval_batch_size`: None
177
  - `gradient_accumulation_steps`: 1
@@ -181,8 +186,8 @@ You can finetune this model on your own dataset.
181
  - `adam_beta1`: 0.9
182
  - `adam_beta2`: 0.999
183
  - `adam_epsilon`: 1e-08
184
- - `max_grad_norm`: 1.0
185
- - `num_train_epochs`: 3.0
186
  - `max_steps`: -1
187
  - `lr_scheduler_type`: linear
188
  - `lr_scheduler_kwargs`: {}
@@ -274,7 +279,7 @@ You can finetune this model on your own dataset.
274
  - `batch_eval_metrics`: False
275
  - `eval_on_start`: False
276
  - `batch_sampler`: batch_sampler
277
- - `multi_dataset_batch_sampler`: proportional
278
 
279
  </details>
280
 
 
12
  - dataset_size:200
13
  - loss:SoftmaxLoss
14
  widget:
15
+ - source_sentence: ' I worry that AI will eventually replace my job,'
16
  sentences:
17
+ - ' AI might affect the stability of job markets globally,'
18
+ - ' AI can mimic human facial expressions,'
19
+ - ' AIs flexibility in updating its models is remarkable,'
20
+ - source_sentence: ' AIs efficiency in data mining is impressive,'
21
  sentences:
22
+ - ' AI could reduce the need for human intervention in many fields,'
23
+ - ' AI will possibly replace customer service jobs,'
24
+ - ' AI systems modify their processes based on feedback,'
25
+ - source_sentence: ' AI can adjust to user preferences over time,'
26
  sentences:
27
+ - ' AI can simulate human emotions in interactions,'
28
+ - ' AIs precision in data analysis is highly reliable,'
29
+ - ' The rapid growth of AI makes me uneasy,'
30
+ - source_sentence: ' AI tools optimize my workflow, making tasks simpler,'
31
  sentences:
32
+ - ' AI tools aid significantly in project execution,'
33
+ - ' AI can carry on meaningful conversations over the phone,'
34
+ - ' AI helps me make better decisions through data analysis,'
35
+ - source_sentence: ' AI effectively enhances my problem-solving strategies,'
36
  sentences:
37
+ - ' AI consistently provides reliable recommendations,'
38
+ - ' AI tools support me in delivering better results,'
39
  - ' AI optimizes content strategy through data analysis,'
 
 
40
  ---
41
 
42
  # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
 
89
  model = SentenceTransformer("zihoo/all-MiniLM-L6-v2-AINLI")
90
  # Run inference
91
  sentences = [
92
+ ' AI effectively enhances my problem-solving strategies,',
93
+ ' AI consistently provides reliable recommendations,',
94
  ' AI optimizes content strategy through data analysis,',
 
95
  ]
96
  embeddings = model.encode(sentences)
97
  print(embeddings.shape)
 
147
 
148
 
149
  * Size: 200 training samples
150
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
151
  * Approximate statistics based on the first 1000 samples:
152
+ | | sentence_0 | sentence_1 | label |
153
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------|
154
  | type | string | string | int |
155
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.91 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 11.91 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>0: ~9.00%</li><li>1: ~69.00%</li><li>2: ~22.00%</li></ul> |
156
  * Samples:
157
+ | sentence_0 | sentence_1 | label |
158
+ |:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------|
159
+ | <code> AI systems autonomously integrate user feedback for improvements</code> | <code> AI systems autonomously integrate user feedback for improvements</code> | <code>0</code> |
160
+ | <code> AI can exhibit empathy in certain contexts,</code> | <code> The quality of AI in customer feedback analysis is notable,</code> | <code>2</code> |
161
+ | <code> I feel stressed about using AI in professional settings,</code> | <code> I feel tense dealing with advanced AI technologies,</code> | <code>0</code> |
162
  * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
163
 
164
  ### Training Hyperparameters
165
+ #### Non-Default Hyperparameters
166
+
167
+ - `per_device_train_batch_size`: 64
168
+ - `per_device_eval_batch_size`: 64
169
+ - `multi_dataset_batch_sampler`: round_robin
170
 
171
  #### All Hyperparameters
172
  <details><summary>Click to expand</summary>
 
175
  - `do_predict`: False
176
  - `eval_strategy`: no
177
  - `prediction_loss_only`: True
178
+ - `per_device_train_batch_size`: 64
179
+ - `per_device_eval_batch_size`: 64
180
  - `per_gpu_train_batch_size`: None
181
  - `per_gpu_eval_batch_size`: None
182
  - `gradient_accumulation_steps`: 1
 
186
  - `adam_beta1`: 0.9
187
  - `adam_beta2`: 0.999
188
  - `adam_epsilon`: 1e-08
189
+ - `max_grad_norm`: 1
190
+ - `num_train_epochs`: 3
191
  - `max_steps`: -1
192
  - `lr_scheduler_type`: linear
193
  - `lr_scheduler_kwargs`: {}
 
279
  - `batch_eval_metrics`: False
280
  - `eval_on_start`: False
281
  - `batch_sampler`: batch_sampler
282
+ - `multi_dataset_batch_sampler`: round_robin
283
 
284
  </details>
285
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8242933065fcf9ac1f32afd943cf9fb365b4897b90ee955e9eda0780a55ba69a
3
  size 90864192
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d11d89d38b73dc9bbee44dd082835092283a177546e02e2ff87748ef6863ac0
3
  size 90864192