Add new SentenceTransformer model.
Browse files- README.md +27 -27
- model.safetensors +1 -1
README.md
CHANGED
@@ -12,31 +12,31 @@ tags:
|
|
12 |
- dataset_size:200
|
13 |
- loss:SoftmaxLoss
|
14 |
widget:
|
15 |
-
- source_sentence: '
|
16 |
sentences:
|
17 |
-
- ' AI
|
18 |
-
- '
|
19 |
-
- '
|
20 |
-
- source_sentence: '
|
21 |
sentences:
|
22 |
-
- '
|
23 |
-
- '
|
24 |
-
- '
|
25 |
- source_sentence: ' AIs data cleaning quality is impressive,'
|
26 |
sentences:
|
27 |
-
- '
|
28 |
- ' AI could make many existing job roles redundant,'
|
29 |
-
- '
|
30 |
-
- source_sentence: '
|
31 |
sentences:
|
32 |
-
- '
|
33 |
-
- ' The
|
34 |
-
- '
|
35 |
-
- source_sentence: '
|
36 |
sentences:
|
37 |
-
- ' AI
|
38 |
-
- '
|
39 |
-
- '
|
40 |
---
|
41 |
|
42 |
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
@@ -89,9 +89,9 @@ from sentence_transformers import SentenceTransformer
|
|
89 |
model = SentenceTransformer("zihoo/all-MiniLM-L6-v2-AINLI")
|
90 |
# Run inference
|
91 |
sentences = [
|
92 |
-
'
|
93 |
-
' AI
|
94 |
-
'
|
95 |
]
|
96 |
embeddings = model.encode(sentences)
|
97 |
print(embeddings.shape)
|
@@ -152,13 +152,13 @@ You can finetune this model on your own dataset.
|
|
152 |
| | sentence_0 | sentence_1 | label |
|
153 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------|
|
154 |
| type | string | string | int |
|
155 |
-
| details | <ul><li>min: 8 tokens</li><li>mean: 11.91 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 11.91 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>0: ~
|
156 |
* Samples:
|
157 |
-
| sentence_0
|
158 |
-
|
159 |
-
| <code> AI
|
160 |
-
| <code> AI
|
161 |
-
| <code> AI
|
162 |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
|
163 |
|
164 |
### Training Hyperparameters
|
|
|
12 |
- dataset_size:200
|
13 |
- loss:SoftmaxLoss
|
14 |
widget:
|
15 |
+
- source_sentence: ' AI streamlines data management systems effectively,'
|
16 |
sentences:
|
17 |
+
- ' AI threatens the job security of call center employees,'
|
18 |
+
- ' AI can replicate human-like intuition in specific domains,'
|
19 |
+
- ' AI can replicate humorous interactions similar to humans,'
|
20 |
+
- source_sentence: ' The future of jobs looks uncertain due to AI,'
|
21 |
sentences:
|
22 |
+
- ' AI systems can autonomously finetune their models,'
|
23 |
+
- ' AIs standard for data accuracy is commendable,'
|
24 |
+
- ' The complexity of AI functionalities can be daunting,'
|
25 |
- source_sentence: ' AIs data cleaning quality is impressive,'
|
26 |
sentences:
|
27 |
+
- ' AI adoption could lead to transformative job restructuring,'
|
28 |
- ' AI could make many existing job roles redundant,'
|
29 |
+
- ' The quality of AI in content generation is notable,'
|
30 |
+
- source_sentence: ' AI improves my productivity by handling repetitive tasks,'
|
31 |
sentences:
|
32 |
+
- ' I feel apprehensive about AIs future implications,'
|
33 |
+
- ' The spread of AI technology is a threat to job security,'
|
34 |
+
- ' AI adapts to varying user inputs accurately,'
|
35 |
+
- source_sentence: ' AI effortlessly adapts to real-time user inputs,'
|
36 |
sentences:
|
37 |
+
- ' The rapid adoption of AI may lead to job insecurity,'
|
38 |
+
- ' AI-generated dialogue feels convincingly human,'
|
39 |
+
- ' I am anxious about relying on AI for critical decisions,'
|
40 |
---
|
41 |
|
42 |
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
|
|
89 |
model = SentenceTransformer("zihoo/all-MiniLM-L6-v2-AINLI")
|
90 |
# Run inference
|
91 |
sentences = [
|
92 |
+
' AI effortlessly adapts to real-time user inputs,',
|
93 |
+
' The rapid adoption of AI may lead to job insecurity,',
|
94 |
+
' I am anxious about relying on AI for critical decisions,',
|
95 |
]
|
96 |
embeddings = model.encode(sentences)
|
97 |
print(embeddings.shape)
|
|
|
152 |
| | sentence_0 | sentence_1 | label |
|
153 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------|
|
154 |
| type | string | string | int |
|
155 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 11.91 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 11.91 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>0: ~12.00%</li><li>1: ~1.50%</li><li>2: ~86.50%</li></ul> |
|
156 |
* Samples:
|
157 |
+
| sentence_0 | sentence_1 | label |
|
158 |
+
|:------------------------------------------------------------------------|:------------------------------------------------------------------------|:---------------|
|
159 |
+
| <code> AI advancements could eliminate various technical jobs,</code> | <code> I feel stressed about using AI in professional settings,</code> | <code>2</code> |
|
160 |
+
| <code> AI systems can autonomously update their operations,</code> | <code> AI mimics human social behavior in digital assistants,</code> | <code>2</code> |
|
161 |
+
| <code> AI can understand and respond to emotions during a chat,</code> | <code> The quality of AI in content generation is notable,</code> | <code>2</code> |
|
162 |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
|
163 |
|
164 |
### Training Hyperparameters
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 90864192
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ac5e3fb74550891aaa1a186a8aa3c3837cc9922f77f202fc476bb57ed17463d
|
3 |
size 90864192
|