zihoo commited on
Commit
0bb7f31
·
verified ·
1 Parent(s): 26e350e

Add new SentenceTransformer model.

Browse files
Files changed (2) hide show
  1. README.md +30 -30
  2. model.safetensors +1 -1
README.md CHANGED
@@ -12,31 +12,31 @@ tags:
12
  - dataset_size:200
13
  - loss:SoftmaxLoss
14
  widget:
15
- - source_sentence: ' AI streamlines data management systems effectively,'
16
  sentences:
17
- - ' AI threatens the job security of call center employees,'
18
- - ' AI can replicate human-like intuition in specific domains,'
19
- - ' AI can replicate humorous interactions similar to humans,'
20
- - source_sentence: ' The future of jobs looks uncertain due to AI,'
21
  sentences:
22
- - ' AI systems can autonomously finetune their models,'
23
- - ' AIs standard for data accuracy is commendable,'
24
- - ' The complexity of AI functionalities can be daunting,'
25
- - source_sentence: ' AIs data cleaning quality is impressive,'
26
  sentences:
27
- - ' AI adoption could lead to transformative job restructuring,'
28
- - ' AI could make many existing job roles redundant,'
29
- - ' The quality of AI in content generation is notable,'
30
- - source_sentence: ' AI improves my productivity by handling repetitive tasks,'
31
  sentences:
32
- - ' I feel apprehensive about AIs future implications,'
33
- - ' The spread of AI technology is a threat to job security,'
34
- - ' AI adapts to varying user inputs accurately,'
35
- - source_sentence: ' AI effortlessly adapts to real-time user inputs,'
36
  sentences:
37
- - ' The rapid adoption of AI may lead to job insecurity,'
38
- - ' AI-generated dialogue feels convincingly human,'
39
- - ' I am anxious about relying on AI for critical decisions,'
40
  ---
41
 
42
  # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
@@ -89,9 +89,9 @@ from sentence_transformers import SentenceTransformer
89
  model = SentenceTransformer("zihoo/all-MiniLM-L6-v2-AINLI")
90
  # Run inference
91
  sentences = [
92
- ' AI effortlessly adapts to real-time user inputs,',
93
- ' The rapid adoption of AI may lead to job insecurity,',
94
- ' I am anxious about relying on AI for critical decisions,',
95
  ]
96
  embeddings = model.encode(sentences)
97
  print(embeddings.shape)
@@ -154,11 +154,11 @@ You can finetune this model on your own dataset.
154
  | type | string | string | int |
155
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.91 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 11.91 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>0: ~12.00%</li><li>1: ~1.50%</li><li>2: ~86.50%</li></ul> |
156
  * Samples:
157
- | sentence_0 | sentence_1 | label |
158
- |:------------------------------------------------------------------------|:------------------------------------------------------------------------|:---------------|
159
- | <code> AI advancements could eliminate various technical jobs,</code> | <code> I feel stressed about using AI in professional settings,</code> | <code>2</code> |
160
- | <code> AI systems can autonomously update their operations,</code> | <code> AI mimics human social behavior in digital assistants,</code> | <code>2</code> |
161
- | <code> AI can understand and respond to emotions during a chat,</code> | <code> The quality of AI in content generation is notable,</code> | <code>2</code> |
162
  * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
163
 
164
  ### Training Hyperparameters
@@ -166,7 +166,7 @@ You can finetune this model on your own dataset.
166
 
167
  - `per_device_train_batch_size`: 64
168
  - `per_device_eval_batch_size`: 64
169
- - `num_train_epochs`: 6
170
  - `multi_dataset_batch_sampler`: round_robin
171
 
172
  #### All Hyperparameters
@@ -188,7 +188,7 @@ You can finetune this model on your own dataset.
188
  - `adam_beta2`: 0.999
189
  - `adam_epsilon`: 1e-08
190
  - `max_grad_norm`: 1
191
- - `num_train_epochs`: 6
192
  - `max_steps`: -1
193
  - `lr_scheduler_type`: linear
194
  - `lr_scheduler_kwargs`: {}
 
12
  - dataset_size:200
13
  - loss:SoftmaxLoss
14
  widget:
15
+ - source_sentence: ' AI significantly contributes to my research efficiency,'
16
  sentences:
17
+ - ' I feel apprehensive about AIs influence on job markets,'
18
+ - ' AI tools support me in delivering better results,'
19
+ - ' AI could reduce the need for human intervention in many fields,'
20
+ - source_sentence: ' I feel tense dealing with advanced AI technologies,'
21
  sentences:
22
+ - ' I worry that AI will eventually replace my job,'
23
+ - ' AI can replicate humorous interactions similar to humans,'
24
+ - ' AI could lead to significant job losses in various industries,'
25
+ - source_sentence: ' AIs adaptability to new information is remarkable,'
26
  sentences:
27
+ - ' The quality of AI-generated translations is impressive,'
28
+ - ' My reliance on AI generates occasional stress,'
29
+ - ' AI might affect the stability of job markets globally,'
30
+ - source_sentence: ' The high quality of AI in voice synthesis is staggering,'
31
  sentences:
32
+ - ' AIs accuracy in identifying patterns is excellent,'
33
+ - ' AIs diagnostic capabilities in healthcare are impressive,'
34
+ - ' AI can self-optimize based on performance metrics,'
35
+ - source_sentence: ' AI enhances my capability to manage diverse projects,'
36
  sentences:
37
+ - ' AI can mimic nuanced human interactions,'
38
+ - ' AI could replace numerous jobs in logistics,'
39
+ - ' AIs predictive analyses are consistently accurate,'
40
  ---
41
 
42
  # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
 
89
  model = SentenceTransformer("zihoo/all-MiniLM-L6-v2-AINLI")
90
  # Run inference
91
  sentences = [
92
+ ' AI enhances my capability to manage diverse projects,',
93
+ ' AI can mimic nuanced human interactions,',
94
+ ' AIs predictive analyses are consistently accurate,',
95
  ]
96
  embeddings = model.encode(sentences)
97
  print(embeddings.shape)
 
154
  | type | string | string | int |
155
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.91 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 11.91 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>0: ~12.00%</li><li>1: ~1.50%</li><li>2: ~86.50%</li></ul> |
156
  * Samples:
157
+ | sentence_0 | sentence_1 | label |
158
+ |:-------------------------------------------------------------------------|:----------------------------------------------------------------------------|:---------------|
159
+ | <code> AI can hold a relevant and coherent conversation,</code> | <code> The automation provided by AI could reduce job availability,</code> | <code>2</code> |
160
+ | <code> The concept of AI making autonomous decisions worries me,</code> | <code> I am hesitant to rely on AI for financial advice,</code> | <code>0</code> |
161
+ | <code> AI has the potential to displace many technical jobs,</code> | <code> AI improves my productivity by handling repetitive tasks,</code> | <code>2</code> |
162
  * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
163
 
164
  ### Training Hyperparameters
 
166
 
167
  - `per_device_train_batch_size`: 64
168
  - `per_device_eval_batch_size`: 64
169
+ - `num_train_epochs`: 8
170
  - `multi_dataset_batch_sampler`: round_robin
171
 
172
  #### All Hyperparameters
 
188
  - `adam_beta2`: 0.999
189
  - `adam_epsilon`: 1e-08
190
  - `max_grad_norm`: 1
191
+ - `num_train_epochs`: 8
192
  - `max_steps`: -1
193
  - `lr_scheduler_type`: linear
194
  - `lr_scheduler_kwargs`: {}
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3a1d403db5186f9ae6b4354d3597287b8f3e280a893246af9e089b797b0ab610
3
  size 90864192
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89a766fa0b350d587f5b96b0aaa7a3e480798ffa226c9ea2dda3e947ce7f3433
3
  size 90864192