Add new SentenceTransformer model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +605 -0
- config.json +28 -0
- config_sentence_transformers.json +13 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +61 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,605 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:58620066
|
8 |
+
- loss:RZTKMatryoshka2dLoss
|
9 |
+
base_model: intfloat/multilingual-e5-base
|
10 |
+
widget:
|
11 |
+
- source_sentence: 'query: чехол на самсунг а30'
|
12 |
+
sentences:
|
13 |
+
- 'passage: Ключниця Shvigel 13989 Коричнева'
|
14 |
+
- 'passage: Ключниці кишенькові Handy Cover Гарантія 1 місяць Колір Рожевий Матеріал
|
15 |
+
Шкіра Країна реєстрації бренда Україна Країна-виробник товару Україна Застібка
|
16 |
+
Змійка Кріплення ключів Кільце'
|
17 |
+
- 'passage: Защитный глянцевый чехол с рисунком для Samsung Galaxy А30 (2019) /
|
18 |
+
A305 / А20 (2019) / A205 Планета'
|
19 |
+
- source_sentence: 'query: мебель для кухни'
|
20 |
+
sentences:
|
21 |
+
- 'passage: Стілець для кухні та вітальні Примтекс Плюс 1022 black S-3120 Червоний
|
22 |
+
(ordf)'
|
23 |
+
- 'passage: Повітряні кульки Angel Gifts Гарантія 14 днів Кількість вантажних місць
|
24 |
+
1 Країна реєстрації бренда Китай Кількість предметів, шт 7 Країна-виробник товару
|
25 |
+
Китай Вид Повітряні кулі Розмір 43 см Розмір 40 х 60 см Розмір 30 см Розмір 40
|
26 |
+
см Колір Різнобарвний Матеріал Фольгований поліетилен + латекс Свято День Святого
|
27 |
+
Валентина Свято 8 березня Свято День народження Тип гарантійного талона Гарантія
|
28 |
+
по чеку Можливість доставки Почтомати Форма Фігурна Особливості Фольговані Доставка
|
29 |
+
Premium Доставка Доставка в магазини ROZETKA'
|
30 |
+
- 'passage: Ключница кожаная женская Grande Pelle leather-11353 Красная'
|
31 |
+
- source_sentence: 'query: мебель для кухни'
|
32 |
+
sentences:
|
33 |
+
- 'passage: Рідина для систем SCR дизельних двигунів (Евро 4,5,6) 1.5 л SHELL AdBLUE'
|
34 |
+
- 'passage: Ключница Black Brier КЛ-5-17 Черная'
|
35 |
+
- 'passage: Кухонний комплект Злата 2,6м Світ Меблів білий/артвуд світлий (без стільниці)'
|
36 |
+
- source_sentence: 'query: вращающаяся подставка для торта'
|
37 |
+
sentences:
|
38 |
+
- 'passage: Штукатурка цементно-вапняна фасадна ПЦШ-017 СІРА ПОЛІПЛАСТ 25 кг'
|
39 |
+
- 'passage: Подставка для работы с тортом вращающаяся 28 см Empire(GS - 840021006274)'
|
40 |
+
- 'passage: Ключницы карманные Dr.Bond Для кого Для женщин Цвет Черный Материал
|
41 |
+
Кожа Застежка Кнопки'
|
42 |
+
- source_sentence: 'query: мебель для кухни'
|
43 |
+
sentences:
|
44 |
+
- 'passage: Ключниці кишенькові Karya Гарантія 14 днів Для кого Для жінок Колір
|
45 |
+
Червоний Матеріал Шкіра Країна реєстрації бренда Туреччина Країна-виробник товару
|
46 |
+
Туреччина'
|
47 |
+
- 'passage: Ключница Traum 7203-10 Черная (4820007203107)'
|
48 |
+
- 'passage: Кухня Эко модуль Вытяжка 600 Эверест Ясень Шимо Светлый 60х30х28 см'
|
49 |
+
pipeline_tag: sentence-similarity
|
50 |
+
library_name: sentence-transformers
|
51 |
+
---
|
52 |
+
|
53 |
+
# SentenceTransformer based on intfloat/multilingual-e5-base
|
54 |
+
|
55 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) on the rozetka_positive_pairs dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
56 |
+
|
57 |
+
## Model Details
|
58 |
+
|
59 |
+
### Model Description
|
60 |
+
- **Model Type:** Sentence Transformer
|
61 |
+
- **Base model:** [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) <!-- at revision d13f1b27baf31030b7fd040960d60d909913633f -->
|
62 |
+
- **Maximum Sequence Length:** 512 tokens
|
63 |
+
- **Output Dimensionality:** 768 dimensions
|
64 |
+
- **Similarity Function:** Dot Product
|
65 |
+
- **Training Dataset:**
|
66 |
+
- rozetka_positive_pairs
|
67 |
+
<!-- - **Language:** Unknown -->
|
68 |
+
<!-- - **License:** Unknown -->
|
69 |
+
|
70 |
+
### Model Sources
|
71 |
+
|
72 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
73 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
74 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
75 |
+
|
76 |
+
### Full Model Architecture
|
77 |
+
|
78 |
+
```
|
79 |
+
RZTKSentenceTransformer(
|
80 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
81 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
82 |
+
(2): Normalize()
|
83 |
+
)
|
84 |
+
```
|
85 |
+
|
86 |
+
## Usage
|
87 |
+
|
88 |
+
### Direct Usage (Sentence Transformers)
|
89 |
+
|
90 |
+
First install the Sentence Transformers library:
|
91 |
+
|
92 |
+
```bash
|
93 |
+
pip install -U sentence-transformers
|
94 |
+
```
|
95 |
+
|
96 |
+
Then you can load this model and run inference.
|
97 |
+
```python
|
98 |
+
from sentence_transformers import SentenceTransformer
|
99 |
+
|
100 |
+
# Download from the 🤗 Hub
|
101 |
+
model = SentenceTransformer("rztk/multilingual-e5-base-matryoshka2d-mnr-3")
|
102 |
+
# Run inference
|
103 |
+
sentences = [
|
104 |
+
'query: мебель для кухни',
|
105 |
+
'passage: Кухня Эко модуль Вытяжка 600 Эверест Ясень Шимо Светлый 60х30х28 см',
|
106 |
+
'passage: Ключниці кишенькові Karya Гарантія 14 днів Для кого Для жінок Колір Червоний Матеріал Шкіра Країна реєстрації бренда Туреччина Країна-виробник товару Туреччина',
|
107 |
+
]
|
108 |
+
embeddings = model.encode(sentences)
|
109 |
+
print(embeddings.shape)
|
110 |
+
# [3, 768]
|
111 |
+
|
112 |
+
# Get the similarity scores for the embeddings
|
113 |
+
similarities = model.similarity(embeddings, embeddings)
|
114 |
+
print(similarities.shape)
|
115 |
+
# [3, 3]
|
116 |
+
```
|
117 |
+
|
118 |
+
<!--
|
119 |
+
### Direct Usage (Transformers)
|
120 |
+
|
121 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
122 |
+
|
123 |
+
</details>
|
124 |
+
-->
|
125 |
+
|
126 |
+
<!--
|
127 |
+
### Downstream Usage (Sentence Transformers)
|
128 |
+
|
129 |
+
You can finetune this model on your own dataset.
|
130 |
+
|
131 |
+
<details><summary>Click to expand</summary>
|
132 |
+
|
133 |
+
</details>
|
134 |
+
-->
|
135 |
+
|
136 |
+
<!--
|
137 |
+
### Out-of-Scope Use
|
138 |
+
|
139 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
140 |
+
-->
|
141 |
+
|
142 |
+
<!--
|
143 |
+
## Bias, Risks and Limitations
|
144 |
+
|
145 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
146 |
+
-->
|
147 |
+
|
148 |
+
<!--
|
149 |
+
### Recommendations
|
150 |
+
|
151 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
152 |
+
-->
|
153 |
+
|
154 |
+
## Training Details
|
155 |
+
|
156 |
+
### Training Dataset
|
157 |
+
|
158 |
+
#### rozetka_positive_pairs
|
159 |
+
|
160 |
+
* Dataset: rozetka_positive_pairs
|
161 |
+
* Size: 58,620,066 training samples
|
162 |
+
* Columns: <code>query</code> and <code>text</code>
|
163 |
+
* Approximate statistics based on the first 1000 samples:
|
164 |
+
| | query | text |
|
165 |
+
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
166 |
+
| type | string | string |
|
167 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 11.27 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 59.47 tokens</li><li>max: 512 tokens</li></ul> |
|
168 |
+
* Samples:
|
169 |
+
| query | text |
|
170 |
+
|:-----------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
171 |
+
| <code>query: xsiomi 9c скло</code> | <code>passage: Защитные стекла Назначение Для мобильных телефонов Цвет Черный Теги Теги Наличие рамки C рамкой Форм-фактор Плоское Клеевой слой По всей поверхности</code> |
|
172 |
+
| <code>query: xsiomi 9c скло</code> | <code>passage: Захисне скло Призначення Для мобільних телефонів Колір Чорний Теги Теги Наявність рамки З рамкою Форм-фактор Плоске Клейовий шар По всій поверхні</code> |
|
173 |
+
| <code>query: xsiomi 9c скло</code> | <code>passage: Захисне скло Glass Full Glue для Xiaomi Redmi 9A/9C/10A (Чорний)</code> |
|
174 |
+
* Loss: <code>sentence_transformers_training.model.matryoshka2d_loss.RZTKMatryoshka2dLoss</code> with these parameters:
|
175 |
+
```json
|
176 |
+
{
|
177 |
+
"loss": "RZTKMultipleNegativesRankingLoss",
|
178 |
+
"n_layers_per_step": 1,
|
179 |
+
"last_layer_weight": 1.0,
|
180 |
+
"prior_layers_weight": 1.0,
|
181 |
+
"kl_div_weight": 1.0,
|
182 |
+
"kl_temperature": 0.3,
|
183 |
+
"matryoshka_dims": [
|
184 |
+
768,
|
185 |
+
512,
|
186 |
+
256,
|
187 |
+
128
|
188 |
+
],
|
189 |
+
"matryoshka_weights": [
|
190 |
+
1,
|
191 |
+
1,
|
192 |
+
1,
|
193 |
+
1
|
194 |
+
],
|
195 |
+
"n_dims_per_step": 1
|
196 |
+
}
|
197 |
+
```
|
198 |
+
|
199 |
+
### Evaluation Dataset
|
200 |
+
|
201 |
+
#### rozetka_positive_pairs
|
202 |
+
|
203 |
+
* Dataset: rozetka_positive_pairs
|
204 |
+
* Size: 1,903,728 evaluation samples
|
205 |
+
* Columns: <code>query</code> and <code>text</code>
|
206 |
+
* Approximate statistics based on the first 1000 samples:
|
207 |
+
| | query | text |
|
208 |
+
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
209 |
+
| type | string | string |
|
210 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 8.36 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 45.68 tokens</li><li>max: 365 tokens</li></ul> |
|
211 |
+
* Samples:
|
212 |
+
| query | text |
|
213 |
+
|:--------------------------------------------|:------------------------------------------------------------------------|
|
214 |
+
| <code>query: создаем нейронную сеть</code> | <code>passage: Створюємо нейронну мережу</code> |
|
215 |
+
| <code>query: создаем нейронную сеть</code> | <code>passage: Создаем нейронную сеть (1666498)</code> |
|
216 |
+
| <code>query: создаем нейронную сеть</code> | <code>passage: Научная и техническая литература Переплет Мягкий</code> |
|
217 |
+
* Loss: <code>sentence_transformers_training.model.matryoshka2d_loss.RZTKMatryoshka2dLoss</code> with these parameters:
|
218 |
+
```json
|
219 |
+
{
|
220 |
+
"loss": "RZTKMultipleNegativesRankingLoss",
|
221 |
+
"n_layers_per_step": 1,
|
222 |
+
"last_layer_weight": 1.0,
|
223 |
+
"prior_layers_weight": 1.0,
|
224 |
+
"kl_div_weight": 1.0,
|
225 |
+
"kl_temperature": 0.3,
|
226 |
+
"matryoshka_dims": [
|
227 |
+
768,
|
228 |
+
512,
|
229 |
+
256,
|
230 |
+
128
|
231 |
+
],
|
232 |
+
"matryoshka_weights": [
|
233 |
+
1,
|
234 |
+
1,
|
235 |
+
1,
|
236 |
+
1
|
237 |
+
],
|
238 |
+
"n_dims_per_step": 1
|
239 |
+
}
|
240 |
+
```
|
241 |
+
|
242 |
+
### Training Hyperparameters
|
243 |
+
#### Non-Default Hyperparameters
|
244 |
+
|
245 |
+
- `eval_strategy`: steps
|
246 |
+
- `per_device_train_batch_size`: 88
|
247 |
+
- `per_device_eval_batch_size`: 88
|
248 |
+
- `learning_rate`: 2e-05
|
249 |
+
- `num_train_epochs`: 1.0
|
250 |
+
- `warmup_ratio`: 0.1
|
251 |
+
- `bf16`: True
|
252 |
+
- `bf16_full_eval`: True
|
253 |
+
- `tf32`: True
|
254 |
+
- `dataloader_num_workers`: 8
|
255 |
+
- `load_best_model_at_end`: True
|
256 |
+
- `optim`: adafactor
|
257 |
+
- `push_to_hub`: True
|
258 |
+
- `hub_model_id`: rztk/multilingual-e5-base-matryoshka2d-mnr-3
|
259 |
+
- `hub_private_repo`: True
|
260 |
+
- `prompts`: {'query': 'query: ', 'text': 'passage: '}
|
261 |
+
- `batch_sampler`: no_duplicates
|
262 |
+
|
263 |
+
#### All Hyperparameters
|
264 |
+
<details><summary>Click to expand</summary>
|
265 |
+
|
266 |
+
- `overwrite_output_dir`: False
|
267 |
+
- `do_predict`: False
|
268 |
+
- `eval_strategy`: steps
|
269 |
+
- `prediction_loss_only`: True
|
270 |
+
- `per_device_train_batch_size`: 88
|
271 |
+
- `per_device_eval_batch_size`: 88
|
272 |
+
- `per_gpu_train_batch_size`: None
|
273 |
+
- `per_gpu_eval_batch_size`: None
|
274 |
+
- `gradient_accumulation_steps`: 1
|
275 |
+
- `eval_accumulation_steps`: None
|
276 |
+
- `torch_empty_cache_steps`: None
|
277 |
+
- `learning_rate`: 2e-05
|
278 |
+
- `weight_decay`: 0.0
|
279 |
+
- `adam_beta1`: 0.9
|
280 |
+
- `adam_beta2`: 0.999
|
281 |
+
- `adam_epsilon`: 1e-08
|
282 |
+
- `max_grad_norm`: 1.0
|
283 |
+
- `num_train_epochs`: 1.0
|
284 |
+
- `max_steps`: -1
|
285 |
+
- `lr_scheduler_type`: linear
|
286 |
+
- `lr_scheduler_kwargs`: {}
|
287 |
+
- `warmup_ratio`: 0.1
|
288 |
+
- `warmup_steps`: 0
|
289 |
+
- `log_level`: passive
|
290 |
+
- `log_level_replica`: warning
|
291 |
+
- `log_on_each_node`: True
|
292 |
+
- `logging_nan_inf_filter`: True
|
293 |
+
- `save_safetensors`: True
|
294 |
+
- `save_on_each_node`: False
|
295 |
+
- `save_only_model`: False
|
296 |
+
- `restore_callback_states_from_checkpoint`: False
|
297 |
+
- `no_cuda`: False
|
298 |
+
- `use_cpu`: False
|
299 |
+
- `use_mps_device`: False
|
300 |
+
- `seed`: 42
|
301 |
+
- `data_seed`: None
|
302 |
+
- `jit_mode_eval`: False
|
303 |
+
- `use_ipex`: False
|
304 |
+
- `bf16`: True
|
305 |
+
- `fp16`: False
|
306 |
+
- `fp16_opt_level`: O1
|
307 |
+
- `half_precision_backend`: auto
|
308 |
+
- `bf16_full_eval`: True
|
309 |
+
- `fp16_full_eval`: False
|
310 |
+
- `tf32`: True
|
311 |
+
- `local_rank`: 0
|
312 |
+
- `ddp_backend`: None
|
313 |
+
- `tpu_num_cores`: None
|
314 |
+
- `tpu_metrics_debug`: False
|
315 |
+
- `debug`: []
|
316 |
+
- `dataloader_drop_last`: True
|
317 |
+
- `dataloader_num_workers`: 8
|
318 |
+
- `dataloader_prefetch_factor`: None
|
319 |
+
- `past_index`: -1
|
320 |
+
- `disable_tqdm`: False
|
321 |
+
- `remove_unused_columns`: True
|
322 |
+
- `label_names`: None
|
323 |
+
- `load_best_model_at_end`: True
|
324 |
+
- `ignore_data_skip`: False
|
325 |
+
- `fsdp`: []
|
326 |
+
- `fsdp_min_num_params`: 0
|
327 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
328 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
329 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
330 |
+
- `deepspeed`: None
|
331 |
+
- `label_smoothing_factor`: 0.0
|
332 |
+
- `optim`: adafactor
|
333 |
+
- `optim_args`: None
|
334 |
+
- `adafactor`: False
|
335 |
+
- `group_by_length`: False
|
336 |
+
- `length_column_name`: length
|
337 |
+
- `ddp_find_unused_parameters`: None
|
338 |
+
- `ddp_bucket_cap_mb`: None
|
339 |
+
- `ddp_broadcast_buffers`: False
|
340 |
+
- `dataloader_pin_memory`: True
|
341 |
+
- `dataloader_persistent_workers`: False
|
342 |
+
- `skip_memory_metrics`: True
|
343 |
+
- `use_legacy_prediction_loop`: False
|
344 |
+
- `push_to_hub`: True
|
345 |
+
- `resume_from_checkpoint`: None
|
346 |
+
- `hub_model_id`: rztk/multilingual-e5-base-matryoshka2d-mnr-3
|
347 |
+
- `hub_strategy`: every_save
|
348 |
+
- `hub_private_repo`: True
|
349 |
+
- `hub_always_push`: False
|
350 |
+
- `gradient_checkpointing`: False
|
351 |
+
- `gradient_checkpointing_kwargs`: None
|
352 |
+
- `include_inputs_for_metrics`: False
|
353 |
+
- `include_for_metrics`: []
|
354 |
+
- `eval_do_concat_batches`: True
|
355 |
+
- `fp16_backend`: auto
|
356 |
+
- `push_to_hub_model_id`: None
|
357 |
+
- `push_to_hub_organization`: None
|
358 |
+
- `mp_parameters`:
|
359 |
+
- `auto_find_batch_size`: False
|
360 |
+
- `full_determinism`: False
|
361 |
+
- `torchdynamo`: None
|
362 |
+
- `ray_scope`: last
|
363 |
+
- `ddp_timeout`: 1800
|
364 |
+
- `torch_compile`: False
|
365 |
+
- `torch_compile_backend`: None
|
366 |
+
- `torch_compile_mode`: None
|
367 |
+
- `dispatch_batches`: None
|
368 |
+
- `split_batches`: None
|
369 |
+
- `include_tokens_per_second`: False
|
370 |
+
- `include_num_input_tokens_seen`: False
|
371 |
+
- `neftune_noise_alpha`: None
|
372 |
+
- `optim_target_modules`: None
|
373 |
+
- `batch_eval_metrics`: False
|
374 |
+
- `eval_on_start`: False
|
375 |
+
- `use_liger_kernel`: False
|
376 |
+
- `eval_use_gather_object`: False
|
377 |
+
- `average_tokens_across_devices`: False
|
378 |
+
- `prompts`: {'query': 'query: ', 'text': 'passage: '}
|
379 |
+
- `batch_sampler`: no_duplicates
|
380 |
+
- `multi_dataset_batch_sampler`: proportional
|
381 |
+
- `ddp_static_graph`: False
|
382 |
+
- `ddp_comm_hook`: bf16
|
383 |
+
- `gradient_as_bucket_view`: False
|
384 |
+
- `num_proc`: 30
|
385 |
+
|
386 |
+
</details>
|
387 |
+
|
388 |
+
### Training Logs
|
389 |
+
<details><summary>Click to expand</summary>
|
390 |
+
|
391 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
392 |
+
|:------:|:------:|:-------------:|:---------------:|
|
393 |
+
| 0.0050 | 833 | 4.8404 | - |
|
394 |
+
| 0.0100 | 1666 | 4.6439 | - |
|
395 |
+
| 0.0150 | 2499 | 4.2238 | - |
|
396 |
+
| 0.0200 | 3332 | 3.5445 | - |
|
397 |
+
| 0.0250 | 4165 | 2.7514 | - |
|
398 |
+
| 0.0300 | 4998 | 2.4037 | - |
|
399 |
+
| 0.0350 | 5831 | 2.1916 | - |
|
400 |
+
| 0.0400 | 6664 | 2.0938 | - |
|
401 |
+
| 0.0450 | 7497 | 1.9268 | - |
|
402 |
+
| 0.0500 | 8330 | 1.8671 | - |
|
403 |
+
| 0.0550 | 9163 | 1.7069 | - |
|
404 |
+
| 0.0600 | 9996 | 1.6419 | - |
|
405 |
+
| 0.0650 | 10829 | 1.55 | - |
|
406 |
+
| 0.0700 | 11662 | 1.5483 | - |
|
407 |
+
| 0.0750 | 12495 | 1.5419 | - |
|
408 |
+
| 0.0800 | 13328 | 1.3582 | - |
|
409 |
+
| 0.0850 | 14161 | 1.3537 | - |
|
410 |
+
| 0.0900 | 14994 | 1.3067 | - |
|
411 |
+
| 0.0950 | 15827 | 1.2128 | - |
|
412 |
+
| 0.1000 | 16654 | - | 1.0107 |
|
413 |
+
| 0.1000 | 16660 | 1.2248 | - |
|
414 |
+
| 0.1050 | 17493 | 1.1565 | - |
|
415 |
+
| 0.1100 | 18326 | 1.1351 | - |
|
416 |
+
| 0.1150 | 19159 | 1.0808 | - |
|
417 |
+
| 0.1200 | 19992 | 1.0561 | - |
|
418 |
+
| 0.1250 | 20825 | 1.078 | - |
|
419 |
+
| 0.1301 | 21658 | 1.1413 | - |
|
420 |
+
| 0.1351 | 22491 | 1.0446 | - |
|
421 |
+
| 0.1401 | 23324 | 0.9986 | - |
|
422 |
+
| 0.1451 | 24157 | 0.9668 | - |
|
423 |
+
| 0.1501 | 24990 | 0.9753 | - |
|
424 |
+
| 0.1551 | 25823 | 1.0031 | - |
|
425 |
+
| 0.1601 | 26656 | 0.9688 | - |
|
426 |
+
| 0.1651 | 27489 | 0.9262 | - |
|
427 |
+
| 0.1701 | 28322 | 0.9702 | - |
|
428 |
+
| 0.1751 | 29155 | 0.9082 | - |
|
429 |
+
| 0.1801 | 29988 | 0.9264 | - |
|
430 |
+
| 0.1851 | 30821 | 0.8526 | - |
|
431 |
+
| 0.1901 | 31654 | 0.9667 | - |
|
432 |
+
| 0.1951 | 32487 | 0.9421 | - |
|
433 |
+
| 0.2000 | 33308 | - | 0.6416 |
|
434 |
+
| 0.2001 | 33320 | 0.9216 | - |
|
435 |
+
| 0.2051 | 34153 | 0.95 | - |
|
436 |
+
| 0.2101 | 34986 | 0.8895 | - |
|
437 |
+
| 0.2151 | 35819 | 0.8349 | - |
|
438 |
+
| 0.2201 | 36652 | 0.8628 | - |
|
439 |
+
| 0.2251 | 37485 | 0.8729 | - |
|
440 |
+
| 0.2301 | 38318 | 0.9285 | - |
|
441 |
+
| 0.2351 | 39151 | 0.8718 | - |
|
442 |
+
| 0.2401 | 39984 | 0.8792 | - |
|
443 |
+
| 0.2451 | 40817 | 0.8852 | - |
|
444 |
+
| 0.2501 | 41650 | 0.877 | - |
|
445 |
+
| 0.2551 | 42483 | 0.8325 | - |
|
446 |
+
| 0.2601 | 43316 | 0.8446 | - |
|
447 |
+
| 0.2651 | 44149 | 0.812 | - |
|
448 |
+
| 0.2701 | 44982 | 0.8246 | - |
|
449 |
+
| 0.2751 | 45815 | 0.8086 | - |
|
450 |
+
| 0.2801 | 46648 | 0.8553 | - |
|
451 |
+
| 0.2851 | 47481 | 0.8506 | - |
|
452 |
+
| 0.2901 | 48314 | 0.834 | - |
|
453 |
+
| 0.2951 | 49147 | 0.8313 | - |
|
454 |
+
| 0.3000 | 49962 | - | 0.5377 |
|
455 |
+
| 0.3001 | 49980 | 0.8376 | - |
|
456 |
+
| 0.3051 | 50813 | 0.7836 | - |
|
457 |
+
| 0.3101 | 51646 | 0.8089 | - |
|
458 |
+
| 0.3151 | 52479 | 0.8065 | - |
|
459 |
+
| 0.3201 | 53312 | 0.8284 | - |
|
460 |
+
| 0.3251 | 54145 | 0.7959 | - |
|
461 |
+
| 0.3301 | 54978 | 0.8332 | - |
|
462 |
+
| 0.3351 | 55811 | 0.7924 | - |
|
463 |
+
| 0.3401 | 56644 | 0.8171 | - |
|
464 |
+
| 0.3451 | 57477 | 0.7924 | - |
|
465 |
+
| 0.3501 | 58310 | 0.7977 | - |
|
466 |
+
| 0.3551 | 59143 | 0.7729 | - |
|
467 |
+
| 0.3601 | 59976 | 0.7617 | - |
|
468 |
+
| 0.3651 | 60809 | 0.8211 | - |
|
469 |
+
| 0.3701 | 61642 | 0.8497 | - |
|
470 |
+
| 0.3751 | 62475 | 0.8218 | - |
|
471 |
+
| 0.3802 | 63308 | 0.7846 | - |
|
472 |
+
| 0.3852 | 64141 | 0.7876 | - |
|
473 |
+
| 0.3902 | 64974 | 0.7912 | - |
|
474 |
+
| 0.3952 | 65807 | 0.7977 | - |
|
475 |
+
| 0.4000 | 66616 | - | 0.4974 |
|
476 |
+
| 0.4002 | 66640 | 0.8096 | - |
|
477 |
+
| 0.4052 | 67473 | 0.8356 | - |
|
478 |
+
| 0.4102 | 68306 | 0.788 | - |
|
479 |
+
| 0.4152 | 69139 | 0.7683 | - |
|
480 |
+
| 0.4202 | 69972 | 0.7358 | - |
|
481 |
+
| 0.4252 | 70805 | 0.7634 | - |
|
482 |
+
| 0.4302 | 71638 | 0.7535 | - |
|
483 |
+
| 0.4352 | 72471 | 0.756 | - |
|
484 |
+
| 0.4402 | 73304 | 0.7633 | - |
|
485 |
+
| 0.4452 | 74137 | 0.7509 | - |
|
486 |
+
| 0.4502 | 74970 | 0.7547 | - |
|
487 |
+
| 0.4552 | 75803 | 0.7539 | - |
|
488 |
+
| 0.4602 | 76636 | 0.7608 | - |
|
489 |
+
| 0.4652 | 77469 | 0.8262 | - |
|
490 |
+
| 0.4702 | 78302 | 0.8076 | - |
|
491 |
+
| 0.4752 | 79135 | 0.8179 | - |
|
492 |
+
| 0.4802 | 79968 | 0.7709 | - |
|
493 |
+
| 0.4852 | 80801 | 0.744 | - |
|
494 |
+
| 0.4902 | 81634 | 0.7846 | - |
|
495 |
+
| 0.4952 | 82467 | 0.7473 | - |
|
496 |
+
| 0.5000 | 83270 | - | 0.4776 |
|
497 |
+
| 0.5002 | 83300 | 0.7759 | - |
|
498 |
+
| 0.5052 | 84133 | 0.755 | - |
|
499 |
+
| 0.5102 | 84966 | 0.7308 | - |
|
500 |
+
| 0.5152 | 85799 | 0.7256 | - |
|
501 |
+
| 0.5202 | 86632 | 0.7703 | - |
|
502 |
+
| 0.5252 | 87465 | 0.7823 | - |
|
503 |
+
| 0.5302 | 88298 | 0.8109 | - |
|
504 |
+
| 0.5352 | 89131 | 0.7795 | - |
|
505 |
+
| 0.5402 | 89964 | 0.7833 | - |
|
506 |
+
| 0.5452 | 90797 | 0.7752 | - |
|
507 |
+
| 0.5502 | 91630 | 0.7975 | - |
|
508 |
+
| 0.5552 | 92463 | 0.7863 | - |
|
509 |
+
| 0.5602 | 93296 | 0.7337 | - |
|
510 |
+
| 0.5652 | 94129 | 0.7755 | - |
|
511 |
+
| 0.5702 | 94962 | 0.7928 | - |
|
512 |
+
| 0.5752 | 95795 | 0.7604 | - |
|
513 |
+
| 0.5802 | 96628 | 0.7983 | - |
|
514 |
+
| 0.5852 | 97461 | 0.7665 | - |
|
515 |
+
| 0.5902 | 98294 | 0.7749 | - |
|
516 |
+
| 0.5952 | 99127 | 0.7838 | - |
|
517 |
+
| 0.6000 | 99924 | - | 0.4669 |
|
518 |
+
| 0.6002 | 99960 | 0.7727 | - |
|
519 |
+
| 0.6052 | 100793 | 0.8049 | - |
|
520 |
+
| 0.6102 | 101626 | 0.7857 | - |
|
521 |
+
| 0.6152 | 102459 | 0.7622 | - |
|
522 |
+
| 0.6202 | 103292 | 0.8117 | - |
|
523 |
+
| 0.6252 | 104125 | 0.7711 | - |
|
524 |
+
| 0.6302 | 104958 | 0.7892 | - |
|
525 |
+
| 0.6353 | 105791 | 0.7938 | - |
|
526 |
+
| 0.6403 | 106624 | 0.728 | - |
|
527 |
+
| 0.6453 | 107457 | 0.7693 | - |
|
528 |
+
| 0.6503 | 108290 | 0.7875 | - |
|
529 |
+
| 0.6553 | 109123 | 0.7958 | - |
|
530 |
+
| 0.6603 | 109956 | 0.749 | - |
|
531 |
+
| 0.6653 | 110789 | 0.7788 | - |
|
532 |
+
| 0.6703 | 111622 | 0.7614 | - |
|
533 |
+
| 0.6753 | 112455 | 0.7577 | - |
|
534 |
+
| 0.6803 | 113288 | 0.7805 | - |
|
535 |
+
| 0.6853 | 114121 | 0.7677 | - |
|
536 |
+
| 0.6903 | 114954 | 0.7458 | - |
|
537 |
+
| 0.6953 | 115787 | 0.7962 | - |
|
538 |
+
| 0.7000 | 116578 | - | 0.4641 |
|
539 |
+
| 0.7003 | 116620 | 0.7275 | - |
|
540 |
+
| 0.7053 | 117453 | 0.7778 | - |
|
541 |
+
| 0.7103 | 118286 | 0.7885 | - |
|
542 |
+
| 0.7153 | 119119 | 0.8046 | - |
|
543 |
+
| 0.7203 | 119952 | 0.8222 | - |
|
544 |
+
| 0.7253 | 120785 | 0.7714 | - |
|
545 |
+
| 0.7303 | 121618 | 0.7983 | - |
|
546 |
+
| 0.7353 | 122451 | 0.7359 | - |
|
547 |
+
| 0.7403 | 123284 | 0.7618 | - |
|
548 |
+
| 0.7453 | 124117 | 0.783 | - |
|
549 |
+
| 0.7503 | 124950 | 0.763 | - |
|
550 |
+
| 0.7553 | 125783 | 0.809 | - |
|
551 |
+
| 0.7603 | 126616 | 0.794 | - |
|
552 |
+
| 0.7653 | 127449 | 0.7366 | - |
|
553 |
+
| 0.7703 | 128282 | 0.776 | - |
|
554 |
+
| 0.7753 | 129115 | 0.8053 | - |
|
555 |
+
| 0.7803 | 129948 | 0.7941 | - |
|
556 |
+
| 0.7853 | 130781 | 0.7722 | - |
|
557 |
+
| 0.7903 | 131614 | 0.7959 | - |
|
558 |
+
| 0.7953 | 132447 | 0.8061 | - |
|
559 |
+
| 0.8000 | 133232 | - | 0.4468 |
|
560 |
+
|
561 |
+
</details>
|
562 |
+
|
563 |
+
### Framework Versions
|
564 |
+
- Python: 3.11.10
|
565 |
+
- Sentence Transformers: 3.3.0
|
566 |
+
- Transformers: 4.46.3
|
567 |
+
- PyTorch: 2.5.1+cu124
|
568 |
+
- Accelerate: 1.1.1
|
569 |
+
- Datasets: 3.1.0
|
570 |
+
- Tokenizers: 0.20.3
|
571 |
+
|
572 |
+
## Citation
|
573 |
+
|
574 |
+
### BibTeX
|
575 |
+
|
576 |
+
#### Sentence Transformers
|
577 |
+
```bibtex
|
578 |
+
@inproceedings{reimers-2019-sentence-bert,
|
579 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
580 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
581 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
582 |
+
month = "11",
|
583 |
+
year = "2019",
|
584 |
+
publisher = "Association for Computational Linguistics",
|
585 |
+
url = "https://arxiv.org/abs/1908.10084",
|
586 |
+
}
|
587 |
+
```
|
588 |
+
|
589 |
+
<!--
|
590 |
+
## Glossary
|
591 |
+
|
592 |
+
*Clearly define terms in order to be accessible across audiences.*
|
593 |
+
-->
|
594 |
+
|
595 |
+
<!--
|
596 |
+
## Model Card Authors
|
597 |
+
|
598 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
599 |
+
-->
|
600 |
+
|
601 |
+
<!--
|
602 |
+
## Model Card Contact
|
603 |
+
|
604 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
605 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "rztk/multilingual-e5-base-matryoshka2d-mnr-3",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.45.1",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.0",
|
4 |
+
"transformers": "4.45.1",
|
5 |
+
"pytorch": "2.4.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {
|
8 |
+
"query": "query: ",
|
9 |
+
"text": "passage: "
|
10 |
+
},
|
11 |
+
"default_prompt_name": null,
|
12 |
+
"similarity_fn_name": "dot"
|
13 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e759dd53bcd8b3994093d7792e7eae011866cd1bafcc1c2fc331dfc35b20de8
|
3 |
+
size 1112197096
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"pad_to_multiple_of": null,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"pad_token_type_id": 0,
|
54 |
+
"padding_side": "right",
|
55 |
+
"sep_token": "</s>",
|
56 |
+
"stride": 0,
|
57 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
58 |
+
"truncation_side": "right",
|
59 |
+
"truncation_strategy": "longest_first",
|
60 |
+
"unk_token": "<unk>"
|
61 |
+
}
|