Update README.md
Browse filesUpdate code section
README.md
CHANGED
@@ -34,26 +34,24 @@ We fine-tuned [google/byt5-small](https://huggingface.co/google/byt5-small) on a
|
|
34 |
|
35 |
```python
|
36 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
37 |
-
|
38 |
tokenizer = AutoTokenizer.from_pretrained("ybracke/transnormer-19c-beta-v02")
|
39 |
model = AutoModelForSeq2SeqLM.from_pretrained("ybracke/transnormer-19c-beta-v02")
|
40 |
-
|
41 |
-
gen_cfg.max_new_tokens = 512
|
42 |
-
sentence = ""
|
43 |
inputs = tokenizer(sentence, return_tensors="pt",)
|
44 |
-
outputs = model.generate(**inputs,
|
45 |
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
|
46 |
-
# >>> ['']
|
47 |
```
|
48 |
|
49 |
-
|
50 |
|
51 |
```python
|
52 |
from transformers import pipeline
|
53 |
transnormer = pipeline('text2text-generation', model='ybracke/transnormer-19c-beta-v02')
|
54 |
-
sentence = ""
|
55 |
print(transnormer(sentence))
|
56 |
-
# >>> [{'generated_text': ''}]
|
57 |
```
|
58 |
|
59 |
## Intended uses & limitations
|
|
|
34 |
|
35 |
```python
|
36 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
37 |
+
|
38 |
tokenizer = AutoTokenizer.from_pretrained("ybracke/transnormer-19c-beta-v02")
|
39 |
model = AutoModelForSeq2SeqLM.from_pretrained("ybracke/transnormer-19c-beta-v02")
|
40 |
+
sentence = "Die Königinn ſaß auf des Pallaſtes mittlerer Tribune."
|
|
|
|
|
41 |
inputs = tokenizer(sentence, return_tensors="pt",)
|
42 |
+
outputs = model.generate(**inputs, max_length=128)
|
43 |
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
|
44 |
+
# >>> ['Die Königin saß auf des Palastes mittlerer Tribüne.']
|
45 |
```
|
46 |
|
47 |
+
Or use this model with the [pipeline API](https://huggingface.co/transformers/main_classes/pipelines.html) like this:
|
48 |
|
49 |
```python
|
50 |
from transformers import pipeline
|
51 |
transnormer = pipeline('text2text-generation', model='ybracke/transnormer-19c-beta-v02')
|
52 |
+
sentence = "Die Königinn ſaß auf des Pallaſtes mittlerer Tribune."
|
53 |
print(transnormer(sentence))
|
54 |
+
# >>> [{'generated_text': 'Die Königin saß auf des Palastes mittlerer Tribüne.'}]
|
55 |
```
|
56 |
|
57 |
## Intended uses & limitations
|