File size: 2,195 Bytes
e3717e2 0891c08 e3717e2 0891c08 e3717e2 8ae7839 e3717e2 4320ea0 e3717e2 4320ea0 e3717e2 4320ea0 e3717e2 4320ea0 8ae7839 e3717e2 4320ea0 e3717e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
base_model: yashcode00/wav2vec2-large-xlsr-indian-language-classification-featureExtractor
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-large-xlsr-indian-language-classification-featureExtractor
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-indian-language-classification-featureExtractor
This model is a fine-tuned version of [yashcode00/wav2vec2-large-xlsr-indian-language-classification-featureExtractor](https://huggingface.co/yashcode00/wav2vec2-large-xlsr-indian-language-classification-featureExtractor) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2045
- Accuracy: 0.9484
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0213 | 10.55 | 1000 | 0.2103 | 0.9460 |
| 0.0192 | 21.11 | 2000 | 0.1935 | 0.9480 |
| 0.0196 | 31.66 | 3000 | 0.2777 | 0.9278 |
| 0.014 | 42.22 | 4000 | 0.1927 | 0.9480 |
| 0.0141 | 52.77 | 5000 | 0.2184 | 0.9439 |
| 0.0106 | 63.32 | 6000 | 0.2401 | 0.9348 |
| 0.0112 | 73.88 | 7000 | 0.2206 | 0.9493 |
| 0.0085 | 84.43 | 8000 | 0.1907 | 0.9526 |
| 0.0079 | 94.99 | 9000 | 0.2052 | 0.9484 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.11.0
- Tokenizers 0.13.3
|