File size: 2,195 Bytes
e3717e2
 
0891c08
e3717e2
 
 
 
 
 
 
 
 
 
 
 
 
 
0891c08
e3717e2
8ae7839
 
e3717e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4320ea0
e3717e2
 
 
4320ea0
e3717e2
 
4320ea0
e3717e2
 
 
4320ea0
 
8ae7839
 
 
 
 
 
 
 
 
e3717e2
 
 
 
4320ea0
e3717e2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
base_model: yashcode00/wav2vec2-large-xlsr-indian-language-classification-featureExtractor
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-large-xlsr-indian-language-classification-featureExtractor
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xlsr-indian-language-classification-featureExtractor

This model is a fine-tuned version of [yashcode00/wav2vec2-large-xlsr-indian-language-classification-featureExtractor](https://huggingface.co/yashcode00/wav2vec2-large-xlsr-indian-language-classification-featureExtractor) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2045
- Accuracy: 0.9484

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0213        | 10.55 | 1000 | 0.2103          | 0.9460   |
| 0.0192        | 21.11 | 2000 | 0.1935          | 0.9480   |
| 0.0196        | 31.66 | 3000 | 0.2777          | 0.9278   |
| 0.014         | 42.22 | 4000 | 0.1927          | 0.9480   |
| 0.0141        | 52.77 | 5000 | 0.2184          | 0.9439   |
| 0.0106        | 63.32 | 6000 | 0.2401          | 0.9348   |
| 0.0112        | 73.88 | 7000 | 0.2206          | 0.9493   |
| 0.0085        | 84.43 | 8000 | 0.1907          | 0.9526   |
| 0.0079        | 94.99 | 9000 | 0.2052          | 0.9484   |


### Framework versions

- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.11.0
- Tokenizers 0.13.3