File size: 2,037 Bytes
715da7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-ucf101-subset-diagnose
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-finetuned-ucf101-subset-diagnose

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8572
- Accuracy: 0.5573

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 850

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.8885        | 0.1012 | 86   | 1.0729          | 0.3385   |
| 0.9537        | 1.1012 | 172  | 0.9109          | 0.4120   |
| 0.9089        | 2.1012 | 258  | 1.0296          | 0.2957   |
| 1.0412        | 3.1012 | 344  | 1.1838          | 0.2991   |
| 0.8928        | 4.1012 | 430  | 0.7726          | 0.6154   |
| 0.7793        | 5.1012 | 516  | 0.7928          | 0.6444   |
| 0.8378        | 6.1012 | 602  | 0.9475          | 0.5248   |
| 0.7738        | 7.1012 | 688  | 0.9032          | 0.5504   |
| 0.6334        | 8.1012 | 774  | 0.9769          | 0.5385   |
| 0.4142        | 9.0894 | 850  | 0.8572          | 0.5573   |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.0.1+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1