--- library_name: transformers license: mit base_model: neuralmind/bert-large-portuguese-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: hate_speech_detection_with_target-bert-large-portuguese-cased results: [] --- # hate_speech_detection_with_target-bert-large-portuguese-cased This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0610 - Accuracy: 0.9892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8021 | 1.0 | 93 | 0.1410 | 0.9594 | | 0.0974 | 2.0 | 186 | 0.0974 | 0.9770 | | 0.1401 | 3.0 | 279 | 0.0550 | 0.9838 | | 0.046 | 4.0 | 372 | 0.0618 | 0.9878 | | 0.0344 | 5.0 | 465 | 0.0469 | 0.9892 | | 0.2429 | 6.0 | 558 | 0.0854 | 0.9878 | | 0.0696 | 7.0 | 651 | 0.0451 | 0.9892 | | 0.0394 | 8.0 | 744 | 0.0460 | 0.9892 | | 0.0279 | 9.0 | 837 | 0.0469 | 0.9892 | | 0.0362 | 10.0 | 930 | 0.0779 | 0.9865 | | 0.0215 | 11.0 | 1023 | 0.0655 | 0.9878 | | 0.0193 | 12.0 | 1116 | 0.0587 | 0.9892 | | 0.0154 | 13.0 | 1209 | 0.0594 | 0.9892 | | 0.015 | 14.0 | 1302 | 0.0601 | 0.9905 | | 0.0156 | 15.0 | 1395 | 0.0604 | 0.9892 | | 0.0157 | 16.0 | 1488 | 0.0604 | 0.9892 | | 0.0145 | 17.0 | 1581 | 0.0607 | 0.9892 | | 0.0176 | 18.0 | 1674 | 0.0607 | 0.9892 | | 0.0193 | 19.0 | 1767 | 0.0609 | 0.9892 | | 0.0206 | 20.0 | 1860 | 0.0610 | 0.9892 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0