File size: 2,335 Bytes
f75e6d4 4616f17 f75e6d4 4616f17 f75e6d4 4616f17 f75e6d4 4616f17 f75e6d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
language:
- ar
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- whitefox123/tashkeel
metrics:
- wer
model-index:
- name: Whisper large - tuned
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: CLARtts
type: whitefox123/tashkeel
config: default
split: None
args: 'config: ar, split: test'
metrics:
- name: Wer
type: wer
value: 156.86486486486487
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper large - tuned
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the CLARtts dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1992
- Wer: 156.8649
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 9375
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0864 | 1.6 | 1000 | 0.1155 | 165.5135 |
| 0.0291 | 3.2 | 2000 | 0.1192 | 268.0360 |
| 0.0196 | 4.8 | 3000 | 0.1317 | 217.9820 |
| 0.0024 | 6.4 | 4000 | 0.1583 | 136.1802 |
| 0.0012 | 8.0 | 5000 | 0.1708 | 136.3604 |
| 0.0004 | 9.6 | 6000 | 0.1841 | 128.7207 |
| 0.0009 | 11.2 | 7000 | 0.1831 | 169.8739 |
| 0.0003 | 12.8 | 8000 | 0.1885 | 158.7387 |
| 0.0001 | 14.4 | 9000 | 0.1992 | 156.8649 |
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.17.0
- Tokenizers 0.15.2
|