--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21K tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: finetuned-skinpics results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5138888888888888 --- # finetuned-skinpics This model is a fine-tuned version of [google/vit-base-patch16-224-in21K](https://huggingface.co/google/vit-base-patch16-224-in21K) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2540 - Accuracy: 0.5139 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.121 | 0.57 | 100 | 1.1020 | 0.2569 | | 1.0768 | 1.15 | 200 | 1.0546 | 0.4792 | | 1.0532 | 1.72 | 300 | 1.0843 | 0.2917 | | 1.0096 | 2.3 | 400 | 1.0693 | 0.4792 | | 1.0716 | 2.87 | 500 | 1.0466 | 0.4931 | | 1.0346 | 3.45 | 600 | 1.0225 | 0.5139 | | 1.0232 | 4.02 | 700 | 1.0230 | 0.4931 | | 0.8936 | 4.6 | 800 | 1.0582 | 0.5069 | | 0.7125 | 5.17 | 900 | 1.0551 | 0.5139 | | 0.6025 | 5.75 | 1000 | 1.1525 | 0.5278 | | 0.4663 | 6.32 | 1100 | 1.2357 | 0.4653 | | 0.5007 | 6.9 | 1200 | 1.2540 | 0.5139 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2