--- license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-docboundary-nov-13 results: [] --- # segformer-b0-finetuned-segments-docboundary-nov-13 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the vigneshgs7/doc-boundary dataset. It achieves the following results on the evaluation set: - Loss: 0.2806 - Mean Iou: 0.4886 - Mean Accuracy: 0.9771 - Overall Accuracy: 0.9771 - Accuracy Page: nan - Accuracy Surface: 0.9771 - Iou Page: 0.0 - Iou Surface: 0.9771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Page | Accuracy Surface | Iou Page | Iou Surface | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------:|:----------------:|:--------:|:-----------:| | 0.4191 | 2.22 | 20 | 0.5643 | 0.4651 | 0.9301 | 0.9301 | nan | 0.9301 | 0.0 | 0.9301 | | 0.3141 | 4.44 | 40 | 0.3959 | 0.4866 | 0.9733 | 0.9733 | nan | 0.9733 | 0.0 | 0.9733 | | 0.2865 | 6.67 | 60 | 0.2889 | 0.4870 | 0.9740 | 0.9740 | nan | 0.9740 | 0.0 | 0.9740 | | 0.3955 | 8.89 | 80 | 0.2806 | 0.4886 | 0.9771 | 0.9771 | nan | 0.9771 | 0.0 | 0.9771 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1