Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 962.48 +/- 180.68
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ca18af49e0587ede19c164c03f3e70bb783424453065973841ff18bb1cab158
|
3 |
+
size 129248
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fee0da4feb0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fee0da4ff40>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fee0da54040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fee0da540d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fee0da54160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fee0da541f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fee0da54280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fee0da54310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fee0da543a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fee0da54430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fee0da544c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fee0da54550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fee0da51840>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1683184107048861268,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGWuir63yHm/ojySPjdWlr5mLzBAhHJNPxNXID9yvxe+jN8zP3kZt7yG6fk+txeZPzEu/j3Stng+uuMsvomJTb8SG90+eN4TP6w3Lj/xwS49qI5ZPxcOcL9jnRW+oba4vkGfrb+4vxE/kHbcPkCVJD+U3d+/8YFgPuBBET95Q2+/V1KJvhlOeT394YO9753dPmjlPL6bmyC8M5R0v6PBzbyo6p2/+RRLO+d1ID8YgvU8D2ntvsYft7pj9i4/kIrlPG4+Ur/qhKo7fOVqv2qRrLxUuzw/uL8RP5B23D5AlSQ/XV9FP/oVhD/l/zU+kz2yvv1tM7+AHCE/ymorPxCjCb+sGxM/kKzePjnzjz/0i17AJ95IvhcLnT/xxkO/z2mNPvrSEr5KEARA+JsjP0v5br4gSDa/cnSRP+bkdD7T/7k+QZ+tv7i/ET/voRTAQJUkP3Et9z7cuMA/YFXCvulQE780DfM+SrIFQFHtaT8w5A7AmWIzP7+DQ7yMK3G/CAleP9kb+L410uA+JXI+vUoh37/EMbM/J3c3PHZDLD9Fn4k/C8Z0v+J7nL4qoAJAALbXvkGfrb+4vxE/kHbcPkCVJD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADR/TY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAA6N6PQAAAAC2t/K/AAAAAOT8Wj0AAAAAeLv2PwAAAABr9o88AAAAAK9U9j8AAAAA4EzhvQAAAAC++uG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/6MjNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPLfIT0AAAAAZPTzvwAAAACstJY9AAAAAAa18z8AAAAAALsNPgAAAAB4Ct0/AAAAALKjcT0AAAAA6NrYvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMNXzjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB96gq+AAAAABxM9L8AAAAAPpoJPgAAAAAfTd4/AAAAADUZFzsAAAAAxujsPwAAAAAyqaw8AAAAAKRz9r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADZDz+2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfjMMPAAAAACOEOy/AAAAAGF6lj0AAAAAdO7gPwAAAADL4ce9AAAAALf+7T8AAAAAjnywPQAAAACcJva/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHPxY7FKkEeMAWyUTegDjAF0lEdAqjoZbt7a7HV9lChoBkdAdrcc45tFa2gHTegDaAhHQKo8O690zTF1fZQoaAZHQH82+3Ytg8doB03oA2gIR0CqP9zKs+3ZdX2UKGgGR0CEo5XpW3jNaAdN6ANoCEdAqj/ky31BdHV9lChoBkdAg6t3Z5AyEmgHTegDaAhHQKpJoVEd/8V1fZQoaAZHQHwcQgX/HYJoB03oA2gIR0CqS2LmZE2HdX2UKGgGR0CBlHAM2FWXaAdN6ANoCEdAqk34Qe3hGnV9lChoBkdAiZMf2Cdz4mgHTegDaAhHQKpN/Y6GQCF1fZQoaAZHQIS79d7fHghoB03oA2gIR0CqVfJEx7AtdX2UKGgGR0CGEV8vVVghaAdN6ANoCEdAqle9lAeJYXV9lChoBkdAgw7EMCtA9mgHTegDaAhHQKpa2gOjIq91fZQoaAZHQINGpbKRuCRoB03oA2gIR0CqWuHtF8XvdX2UKGgGR0CENsovSMLnaAdN6ANoCEdAqmXO8AaNuXV9lChoBkdAhebjD0lJH2gHTegDaAhHQKpnl5yEL6V1fZQoaAZHQIFc8QCjk+5oB03oA2gIR0CqaiISDh99dX2UKGgGR0CG+ihakhzOaAdN6ANoCEdAqmondbgTAXV9lChoBkdAhMS2QfZElWgHTegDaAhHQKpyNyksSTR1fZQoaAZHQITwlu+AVfxoB03oA2gIR0CqdABhQWN4dX2UKGgGR0CEYyYIjW07aAdN6ANoCEdAqnaQplSS/3V9lChoBkdAgEFjOcDr7mgHTegDaAhHQKp2ln8Kohp1fZQoaAZHQINo4QSSNfhoB03oA2gIR0CqgfvDP4VRdX2UKGgGR0CC/6zeGfwraAdN6ANoCEdAqoPI7ihnJ3V9lChoBkdAg67qJMxoI2gHTegDaAhHQKqGZEtNBWx1fZQoaAZHQIbTGZkTYd1oB03oA2gIR0CqhmngxagVdX2UKGgGR0B/GF9kSVW0aAdN6ANoCEdAqo5mlj3Eh3V9lChoBkdAfm14pMHryGgHTegDaAhHQKqQNIYm9g51fZQoaAZHQIcE0hePaL5oB03oA2gIR0CqksgAQxvfdX2UKGgGR0CM3VEc81XOaAdN6ANoCEdAqpLNY6nzhHV9lChoBkdAjarhsImgJ2gHTegDaAhHQKqdJf1Hvtt1fZQoaAZHQIQQTMTviLloB03oA2gIR0Cqn/qv3ai9dX2UKGgGR0CFydV9Wp6yaAdN6ANoCEdAqqKchxHXmXV9lChoBkdAiBIooVmBfGgHTegDaAhHQKqioesgdOt1fZQoaAZHQIwjuXZ5AyFoB03oA2gIR0Cqqn91U2k0dX2UKGgGR0CHmhXsgMc7aAdN6ANoCEdAqqwv4VRDTnV9lChoBkdAi19UjC53DGgHTegDaAhHQKqusvKU3XJ1fZQoaAZHQIr4D9VFQVNoB03oA2gIR0CqrrhsQ/X5dX2UKGgGR0CMuZxVhkRSaAdN6ANoCEdAqrec7OmixnV9lChoBkdAhJ4wT238XWgHTegDaAhHQKq6TviLl3h1fZQoaAZHQIz7sLSeAd5oB03oA2gIR0CqvjHbh3qzdX2UKGgGR0B9wWa2F36iaAdN6ANoCEdAqr43gNwzcnV9lChoBkdAhhGX3xnWa2gHTegDaAhHQKrGKTAWSEF1fZQoaAZHQIeuKGnGbTdoB03oA2gIR0Cqx/Q2VE/jdX2UKGgGR0CMcA13MY/FaAdN6ANoCEdAqsqGs1baAXV9lChoBkdAgjOCvgWJrWgHTegDaAhHQKrKjBeHBUJ1fZQoaAZHQJE+BOO801toB03oA2gIR0Cq0k1Yp2ECdX2UKGgGR0CNIlDx9XtCaAdN6ANoCEdAqtTSjWTX8XV9lChoBkdAhmhpU5uIh2gHTegDaAhHQKrYqiliz9l1fZQoaAZHQJA02xMWXTpoB03oA2gIR0Cq2LJt78ekdX2UKGgGR0CJ83uMuOCHaAdN6ANoCEdAquG9gpjMFHV9lChoBkdAjnEyYPXkHWgHTegDaAhHQKrjgUzsQd11fZQoaAZHQIRpMSVW0Z5oB03oA2gIR0Cq5hGnO0LMdX2UKGgGR0CC3TyCnP3SaAdN6ANoCEdAquYW32EkB3V9lChoBkdAjq2X7+DODGgHTegDaAhHQKrt4zWPLgZ1fZQoaAZHQI4DhP9DQZ5oB03oA2gIR0Cq77HVoYeldX2UKGgGR0COb3h8YyfuaAdN6ANoCEdAqvL82itaIXV9lChoBkdAic8YMWoFV2gHTegDaAhHQKrzBFqBVdZ1fZQoaAZHQIZX89QoCuFoB03oA2gIR0Cq/ZLtmcvvdX2UKGgGR0CBG06OHWSVaAdN6ANoCEdAqv9VbA1vVHV9lChoBkdAjq/Atvn8sWgHTegDaAhHQKsB76rNnoR1fZQoaAZHQI4vHV7Qb+9oB03oA2gIR0CrAfTQu27WdX2UKGgGR0CLYwQz1sciaAdN6ANoCEdAqwm68UVSGnV9lChoBkdAkCbns9jgAWgHTegDaAhHQKsLe8wHqu91fZQoaAZHQJFEmNDMNc5oB03oA2gIR0CrDfQAU+LWdX2UKGgGR0CNu12U0Nz9aAdN6ANoCEdAqw35H09QoHV9lChoBkdAjkw7TMJQcmgHTegDaAhHQKsZNEuxrzp1fZQoaAZHQIQFJisny/doB03oA2gIR0CrGuyeI2wWdX2UKGgGR0CJSo4jKPn0aAdN6ANoCEdAqx15EjPfK3V9lChoBkdAjKfwWepXIWgHTegDaAhHQKsdfmFrVON1fZQoaAZHQIKHJpeu3c5oB03oA2gIR0CrJW7ZWaMKdX2UKGgGR0CG6T+az/p/aAdN6ANoCEdAqycyCnP3SXV9lChoBkdAhUHLEUCaJGgHTegDaAhHQKspxy+6Ae91fZQoaAZHQI79tpVS4vxoB03oA2gIR0CrKcyP2f03dX2UKGgGR0CNRkzoEB8yaAdN6ANoCEdAqzPSpkwvg3V9lChoBkdAhjstmcvugGgHTegDaAhHQKs2hsHjZL91fZQoaAZHQIRXmyVv/BFoB03oA2gIR0CrOSaBAfMfdX2UKGgGR0CRIoGUOd5IaAdN6ANoCEdAqzkrwz+FUXV9lChoBkdAihx7VSXMQmgHTegDaAhHQKtBC5vtMPB1fZQoaAZHQIzM7nLaEjBoB03oA2gIR0CrQs0p3HJcdX2UKGgGR0CQWM9/jKgaaAdN6ANoCEdAq0VK0D2alXV9lChoBkdAj4QrC3w1BWgHTegDaAhHQKtFUHnlnyx1fZQoaAZHQIm5+BFuvU1oB03oA2gIR0CrTgB2fTTfdX2UKGgGR0CAd2fbsWweaAdN6ANoCEdAq1CfJ5mh/XV9lChoBkdAk8T8/IKc/mgHTegDaAhHQKtUj6MR6GB1fZQoaAZHQJPWPxsl9jRoB03oA2gIR0CrVJffoA4odX2UKGgGR0CSBn6DXe3yaAdN6ANoCEdAq1xtGkN4JXV9lChoBkdAjGc3nyNGVmgHTegDaAhHQKteRgSeyzJ1fZQoaAZHQI2bn3xnWatoB03oA2gIR0CrYNlEAo5QdX2UKGgGR0CQCXb70nPWaAdN6ANoCEdAq2DeuFHrhXV9lChoBkdAkGD2MfigkGgHTegDaAhHQKtonwb2lEZ1fZQoaAZHQI3a4//vOQhoB03oA2gIR0CrawYXfqHHdX2UKGgGR0CPXj/I8yN5aAdN6ANoCEdAq2697MPjGXV9lChoBkdAkW5zzVc2SGgHTegDaAhHQKtuxciW3Sd1fZQoaAZHQI98u1x82JloB03oA2gIR0CreAZcLSeAdX2UKGgGR0CRxpiA2AG0aAdN6ANoCEdAq3nJJ7LMcXV9lChoBkdAjCViBXjlxWgHTegDaAhHQKt8USg5BC51fZQoaAZHQIoPsXk5p8FoB03oA2gIR0CrfFaBy0a7dX2UKGgGR0COI+8UVSGbaAdN6ANoCEdAq4Q8Es8PnXV9lChoBkdAkOpsMy8BdWgHTegDaAhHQKuF/31zySV1fZQoaAZHQIMdlVR1oxpoB03oA2gIR0CriTht1p0wdX2UKGgGR0CE3s8Hv+fiaAdN6ANoCEdAq4k/hn8KonVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab188e5a84dd8a6f0e29f4b16b83d0b1172614543e9e83039d2a033a5237c149
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fdce9501bfb4c5dab041061e19a4fb216aabb8f745fb5f368cc9407202ef15b
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fee0da4feb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fee0da4ff40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fee0da54040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fee0da540d0>", "_build": "<function ActorCriticPolicy._build at 0x7fee0da54160>", "forward": "<function ActorCriticPolicy.forward at 0x7fee0da541f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fee0da54280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fee0da54310>", "_predict": "<function ActorCriticPolicy._predict at 0x7fee0da543a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fee0da54430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fee0da544c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fee0da54550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fee0da51840>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683184107048861268, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGWuir63yHm/ojySPjdWlr5mLzBAhHJNPxNXID9yvxe+jN8zP3kZt7yG6fk+txeZPzEu/j3Stng+uuMsvomJTb8SG90+eN4TP6w3Lj/xwS49qI5ZPxcOcL9jnRW+oba4vkGfrb+4vxE/kHbcPkCVJD+U3d+/8YFgPuBBET95Q2+/V1KJvhlOeT394YO9753dPmjlPL6bmyC8M5R0v6PBzbyo6p2/+RRLO+d1ID8YgvU8D2ntvsYft7pj9i4/kIrlPG4+Ur/qhKo7fOVqv2qRrLxUuzw/uL8RP5B23D5AlSQ/XV9FP/oVhD/l/zU+kz2yvv1tM7+AHCE/ymorPxCjCb+sGxM/kKzePjnzjz/0i17AJ95IvhcLnT/xxkO/z2mNPvrSEr5KEARA+JsjP0v5br4gSDa/cnSRP+bkdD7T/7k+QZ+tv7i/ET/voRTAQJUkP3Et9z7cuMA/YFXCvulQE780DfM+SrIFQFHtaT8w5A7AmWIzP7+DQ7yMK3G/CAleP9kb+L410uA+JXI+vUoh37/EMbM/J3c3PHZDLD9Fn4k/C8Z0v+J7nL4qoAJAALbXvkGfrb+4vxE/kHbcPkCVJD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADR/TY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAA6N6PQAAAAC2t/K/AAAAAOT8Wj0AAAAAeLv2PwAAAABr9o88AAAAAK9U9j8AAAAA4EzhvQAAAAC++uG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/6MjNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPLfIT0AAAAAZPTzvwAAAACstJY9AAAAAAa18z8AAAAAALsNPgAAAAB4Ct0/AAAAALKjcT0AAAAA6NrYvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMNXzjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB96gq+AAAAABxM9L8AAAAAPpoJPgAAAAAfTd4/AAAAADUZFzsAAAAAxujsPwAAAAAyqaw8AAAAAKRz9r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADZDz+2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfjMMPAAAAACOEOy/AAAAAGF6lj0AAAAAdO7gPwAAAADL4ce9AAAAALf+7T8AAAAAjnywPQAAAACcJva/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHPxY7FKkEeMAWyUTegDjAF0lEdAqjoZbt7a7HV9lChoBkdAdrcc45tFa2gHTegDaAhHQKo8O690zTF1fZQoaAZHQH82+3Ytg8doB03oA2gIR0CqP9zKs+3ZdX2UKGgGR0CEo5XpW3jNaAdN6ANoCEdAqj/ky31BdHV9lChoBkdAg6t3Z5AyEmgHTegDaAhHQKpJoVEd/8V1fZQoaAZHQHwcQgX/HYJoB03oA2gIR0CqS2LmZE2HdX2UKGgGR0CBlHAM2FWXaAdN6ANoCEdAqk34Qe3hGnV9lChoBkdAiZMf2Cdz4mgHTegDaAhHQKpN/Y6GQCF1fZQoaAZHQIS79d7fHghoB03oA2gIR0CqVfJEx7AtdX2UKGgGR0CGEV8vVVghaAdN6ANoCEdAqle9lAeJYXV9lChoBkdAgw7EMCtA9mgHTegDaAhHQKpa2gOjIq91fZQoaAZHQINGpbKRuCRoB03oA2gIR0CqWuHtF8XvdX2UKGgGR0CENsovSMLnaAdN6ANoCEdAqmXO8AaNuXV9lChoBkdAhebjD0lJH2gHTegDaAhHQKpnl5yEL6V1fZQoaAZHQIFc8QCjk+5oB03oA2gIR0CqaiISDh99dX2UKGgGR0CG+ihakhzOaAdN6ANoCEdAqmondbgTAXV9lChoBkdAhMS2QfZElWgHTegDaAhHQKpyNyksSTR1fZQoaAZHQITwlu+AVfxoB03oA2gIR0CqdABhQWN4dX2UKGgGR0CEYyYIjW07aAdN6ANoCEdAqnaQplSS/3V9lChoBkdAgEFjOcDr7mgHTegDaAhHQKp2ln8Kohp1fZQoaAZHQINo4QSSNfhoB03oA2gIR0CqgfvDP4VRdX2UKGgGR0CC/6zeGfwraAdN6ANoCEdAqoPI7ihnJ3V9lChoBkdAg67qJMxoI2gHTegDaAhHQKqGZEtNBWx1fZQoaAZHQIbTGZkTYd1oB03oA2gIR0CqhmngxagVdX2UKGgGR0B/GF9kSVW0aAdN6ANoCEdAqo5mlj3Eh3V9lChoBkdAfm14pMHryGgHTegDaAhHQKqQNIYm9g51fZQoaAZHQIcE0hePaL5oB03oA2gIR0CqksgAQxvfdX2UKGgGR0CM3VEc81XOaAdN6ANoCEdAqpLNY6nzhHV9lChoBkdAjarhsImgJ2gHTegDaAhHQKqdJf1Hvtt1fZQoaAZHQIQQTMTviLloB03oA2gIR0Cqn/qv3ai9dX2UKGgGR0CFydV9Wp6yaAdN6ANoCEdAqqKchxHXmXV9lChoBkdAiBIooVmBfGgHTegDaAhHQKqioesgdOt1fZQoaAZHQIwjuXZ5AyFoB03oA2gIR0Cqqn91U2k0dX2UKGgGR0CHmhXsgMc7aAdN6ANoCEdAqqwv4VRDTnV9lChoBkdAi19UjC53DGgHTegDaAhHQKqusvKU3XJ1fZQoaAZHQIr4D9VFQVNoB03oA2gIR0CqrrhsQ/X5dX2UKGgGR0CMuZxVhkRSaAdN6ANoCEdAqrec7OmixnV9lChoBkdAhJ4wT238XWgHTegDaAhHQKq6TviLl3h1fZQoaAZHQIz7sLSeAd5oB03oA2gIR0CqvjHbh3qzdX2UKGgGR0B9wWa2F36iaAdN6ANoCEdAqr43gNwzcnV9lChoBkdAhhGX3xnWa2gHTegDaAhHQKrGKTAWSEF1fZQoaAZHQIeuKGnGbTdoB03oA2gIR0Cqx/Q2VE/jdX2UKGgGR0CMcA13MY/FaAdN6ANoCEdAqsqGs1baAXV9lChoBkdAgjOCvgWJrWgHTegDaAhHQKrKjBeHBUJ1fZQoaAZHQJE+BOO801toB03oA2gIR0Cq0k1Yp2ECdX2UKGgGR0CNIlDx9XtCaAdN6ANoCEdAqtTSjWTX8XV9lChoBkdAhmhpU5uIh2gHTegDaAhHQKrYqiliz9l1fZQoaAZHQJA02xMWXTpoB03oA2gIR0Cq2LJt78ekdX2UKGgGR0CJ83uMuOCHaAdN6ANoCEdAquG9gpjMFHV9lChoBkdAjnEyYPXkHWgHTegDaAhHQKrjgUzsQd11fZQoaAZHQIRpMSVW0Z5oB03oA2gIR0Cq5hGnO0LMdX2UKGgGR0CC3TyCnP3SaAdN6ANoCEdAquYW32EkB3V9lChoBkdAjq2X7+DODGgHTegDaAhHQKrt4zWPLgZ1fZQoaAZHQI4DhP9DQZ5oB03oA2gIR0Cq77HVoYeldX2UKGgGR0COb3h8YyfuaAdN6ANoCEdAqvL82itaIXV9lChoBkdAic8YMWoFV2gHTegDaAhHQKrzBFqBVdZ1fZQoaAZHQIZX89QoCuFoB03oA2gIR0Cq/ZLtmcvvdX2UKGgGR0CBG06OHWSVaAdN6ANoCEdAqv9VbA1vVHV9lChoBkdAjq/Atvn8sWgHTegDaAhHQKsB76rNnoR1fZQoaAZHQI4vHV7Qb+9oB03oA2gIR0CrAfTQu27WdX2UKGgGR0CLYwQz1sciaAdN6ANoCEdAqwm68UVSGnV9lChoBkdAkCbns9jgAWgHTegDaAhHQKsLe8wHqu91fZQoaAZHQJFEmNDMNc5oB03oA2gIR0CrDfQAU+LWdX2UKGgGR0CNu12U0Nz9aAdN6ANoCEdAqw35H09QoHV9lChoBkdAjkw7TMJQcmgHTegDaAhHQKsZNEuxrzp1fZQoaAZHQIQFJisny/doB03oA2gIR0CrGuyeI2wWdX2UKGgGR0CJSo4jKPn0aAdN6ANoCEdAqx15EjPfK3V9lChoBkdAjKfwWepXIWgHTegDaAhHQKsdfmFrVON1fZQoaAZHQIKHJpeu3c5oB03oA2gIR0CrJW7ZWaMKdX2UKGgGR0CG6T+az/p/aAdN6ANoCEdAqycyCnP3SXV9lChoBkdAhUHLEUCaJGgHTegDaAhHQKspxy+6Ae91fZQoaAZHQI79tpVS4vxoB03oA2gIR0CrKcyP2f03dX2UKGgGR0CNRkzoEB8yaAdN6ANoCEdAqzPSpkwvg3V9lChoBkdAhjstmcvugGgHTegDaAhHQKs2hsHjZL91fZQoaAZHQIRXmyVv/BFoB03oA2gIR0CrOSaBAfMfdX2UKGgGR0CRIoGUOd5IaAdN6ANoCEdAqzkrwz+FUXV9lChoBkdAihx7VSXMQmgHTegDaAhHQKtBC5vtMPB1fZQoaAZHQIzM7nLaEjBoB03oA2gIR0CrQs0p3HJcdX2UKGgGR0CQWM9/jKgaaAdN6ANoCEdAq0VK0D2alXV9lChoBkdAj4QrC3w1BWgHTegDaAhHQKtFUHnlnyx1fZQoaAZHQIm5+BFuvU1oB03oA2gIR0CrTgB2fTTfdX2UKGgGR0CAd2fbsWweaAdN6ANoCEdAq1CfJ5mh/XV9lChoBkdAk8T8/IKc/mgHTegDaAhHQKtUj6MR6GB1fZQoaAZHQJPWPxsl9jRoB03oA2gIR0CrVJffoA4odX2UKGgGR0CSBn6DXe3yaAdN6ANoCEdAq1xtGkN4JXV9lChoBkdAjGc3nyNGVmgHTegDaAhHQKteRgSeyzJ1fZQoaAZHQI2bn3xnWatoB03oA2gIR0CrYNlEAo5QdX2UKGgGR0CQCXb70nPWaAdN6ANoCEdAq2DeuFHrhXV9lChoBkdAkGD2MfigkGgHTegDaAhHQKtonwb2lEZ1fZQoaAZHQI3a4//vOQhoB03oA2gIR0CrawYXfqHHdX2UKGgGR0CPXj/I8yN5aAdN6ANoCEdAq2697MPjGXV9lChoBkdAkW5zzVc2SGgHTegDaAhHQKtuxciW3Sd1fZQoaAZHQI98u1x82JloB03oA2gIR0CreAZcLSeAdX2UKGgGR0CRxpiA2AG0aAdN6ANoCEdAq3nJJ7LMcXV9lChoBkdAjCViBXjlxWgHTegDaAhHQKt8USg5BC51fZQoaAZHQIoPsXk5p8FoB03oA2gIR0CrfFaBy0a7dX2UKGgGR0COI+8UVSGbaAdN6ANoCEdAq4Q8Es8PnXV9lChoBkdAkOpsMy8BdWgHTegDaAhHQKuF/31zySV1fZQoaAZHQIMdlVR1oxpoB03oA2gIR0CriTht1p0wdX2UKGgGR0CE3s8Hv+fiaAdN6ANoCEdAq4k/hn8KonVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (983 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 962.481745827361, "std_reward": 180.67927112129237, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-04T08:07:49.262994"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6ea97164ed449f4652ceca541d4255753a2fa398aceccd122a606e57aa2f820
|
3 |
+
size 2176
|