--- library_name: transformers license: mit base_model: dbmdz/bert-base-turkish-cased tags: - generated_from_keras_callback model-index: - name: umutarpayy/bert_fen_6 results: [] --- # umutarpayy/bert_fen_6 This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2601 - Train Accuracy: 0.9492 - Validation Loss: 0.1871 - Validation Accuracy: 0.9544 - Epoch: 10 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3768, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 2.7335 | 0.3676 | 1.5315 | 0.5813 | 0 | | 1.3478 | 0.6236 | 1.0674 | 0.6885 | 1 | | 1.0438 | 0.6943 | 0.8446 | 0.7242 | 2 | | 0.8667 | 0.7393 | 0.6786 | 0.7956 | 3 | | 0.7305 | 0.7888 | 0.5613 | 0.8512 | 4 | | 0.6061 | 0.8316 | 0.4309 | 0.8889 | 5 | | 0.5022 | 0.8635 | 0.3576 | 0.9127 | 6 | | 0.4176 | 0.8977 | 0.3104 | 0.9266 | 7 | | 0.3485 | 0.9174 | 0.2435 | 0.9444 | 8 | | 0.2946 | 0.9385 | 0.2144 | 0.9444 | 9 | | 0.2601 | 0.9492 | 0.1871 | 0.9544 | 10 | ### Framework versions - Transformers 4.47.1 - TensorFlow 2.17.1 - Datasets 3.2.0 - Tokenizers 0.21.0