File size: 2,479 Bytes
3b5cb4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61645ea
 
 
3b5cb4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: weeds_convnext_imbalanced
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9446428571428571
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# weeds_convnext_imbalanced
Model is trained on imbalanced dataset/ .8 .1 .1 split/ 224x224 resized

Dataset: https://www.kaggle.com/datasets/vbookshelf/v2-plant-seedlings-dataset

This model is a fine-tuned version of [facebook/convnext-large-224](https://huggingface.co/facebook/convnext-large-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1963
- Accuracy: 0.9446

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0851        | 1.0   | 275  | 0.9525          | 0.8161   |
| 0.3283        | 2.0   | 550  | 0.2921          | 0.925    |
| 0.1298        | 3.0   | 825  | 0.2126          | 0.9411   |
| 0.1583        | 4.0   | 1100 | 0.1959          | 0.9464   |
| 0.1922        | 5.0   | 1375 | 0.2284          | 0.9321   |
| 0.1358        | 6.0   | 1650 | 0.1811          | 0.9607   |
| 0.137         | 7.0   | 1925 | 0.1808          | 0.9446   |
| 0.1524        | 8.0   | 2200 | 0.2534          | 0.9357   |
| 0.0507        | 9.0   | 2475 | 0.1908          | 0.95     |
| 0.1011        | 10.0  | 2750 | 0.1963          | 0.9446   |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.10.1
- Tokenizers 0.13.2