File size: 2,511 Bytes
6a2e5d7
934ea4c
b3c9527
6a2e5d7
f1cf0a3
6a2e5d7
 
 
b3c9527
 
 
6a2e5d7
 
 
 
 
 
 
 
 
 
f1cf0a3
6a2e5d7
934ea4c
6a2e5d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
934ea4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a2e5d7
 
 
 
1d91d36
6a2e5d7
1d91d36
 
6a2e5d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: llama3
library_name: peft
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B
datasets:
- yihanwang617/ultrachat_200k_processed_indicator_0.6_4k
model-index:
- name: llama-3-qlora-ultrachat-200k-processed-indicator-0.6
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# llama-3-qlora-ultrachat-200k-processed-indicator-0.6

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the yihanwang617/ultrachat_200k_processed_indicator_0.6_4k dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0200

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0614        | 0.0616 | 200  | 1.0632          |
| 1.0689        | 0.1232 | 400  | 1.0476          |
| 1.0053        | 0.1847 | 600  | 1.0413          |
| 1.0446        | 0.2463 | 800  | 1.0366          |
| 1.0091        | 0.3079 | 1000 | 1.0336          |
| 1.0093        | 0.3695 | 1200 | 1.0310          |
| 1.0086        | 0.4311 | 1400 | 1.0291          |
| 1.0362        | 0.4926 | 1600 | 1.0270          |
| 1.0155        | 0.5542 | 1800 | 1.0256          |
| 1.0138        | 0.6158 | 2000 | 1.0240          |
| 1.0392        | 0.6774 | 2200 | 1.0226          |
| 1.0079        | 0.7389 | 2400 | 1.0216          |
| 1.0139        | 0.8005 | 2600 | 1.0208          |
| 0.9857        | 0.8621 | 2800 | 1.0204          |
| 1.0258        | 0.9237 | 3000 | 1.0201          |
| 1.0147        | 0.9853 | 3200 | 1.0200          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.40.1
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1