ucalyptus commited on
Commit
58467f5
·
verified ·
1 Parent(s): 29261b9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -188
README.md CHANGED
@@ -1,199 +1,103 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
 
4
  ---
5
 
6
- # Model Card for Model ID
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
75
 
76
  ## Training Details
77
-
78
  ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - math
6
+ - reasoning
7
+ - grpo
8
+ - gsm8k
9
+ - reinforcement-learning
10
+ license: apache-2.0
11
+ datasets:
12
+ - openai/gsm8k
13
+ metrics:
14
+ - accuracy
15
+ - format_adherence
16
  library_name: transformers
17
+ pipeline_tag: text-generation
18
+ base_model: premai-io/prem-1B-chat
19
  ---
20
 
21
+ # GRPO-Trained Math Reasoning Model
22
+
23
+ ## Model Description
24
+ This model was fine-tuned using GRPO (Generative Reward-Powered Optimization), a reinforcement learning technique that optimizes language models using multiple reward functions to improve both output format consistency and mathematical reasoning abilities.
25
+
26
+ ### Base Model
27
+ - Started with the `premai-io/prem-1B-chat` base model
28
+ - Uses Flash Attention 2 for efficient training
29
+ - Model architecture: Causal Language Model (CLM)
30
+
31
+ ### GRPO Training Details
32
+ GRPO training involves optimizing the model using two specific reward functions:
33
+
34
+ 1. **Format Reward Function**
35
+ - Ensures responses follow a strict XML-style format:
36
+ ```xml
37
+ <reasoning>
38
+ [step-by-step solution]
39
+ </reasoning>
40
+ <answer>
41
+ [numerical answer]
42
+ </answer>
43
+ ```
44
+ - Rewards are given for:
45
+ - Strict format adherence (0.5 points)
46
+ - Soft format matching (0.3 points)
47
+ - Integer answer format (0.5 points)
48
+ - Proper XML structure (up to 0.5 points)
49
+
50
+ 2. **Correctness Reward Function**
51
+ - Evaluates mathematical accuracy
52
+ - Awards 2.0 points for correct numerical answers
53
+ - Awards 0.0 points for incorrect answers
54
+
55
+ ### Training Configuration
56
+ - Learning rate: 5e-6
57
+ - Batch size: 2 per device
58
+ - Gradient accumulation steps: 2
59
+ - Training epochs: 1
60
+ - Uses cosine learning rate scheduler
61
+ - Warmup ratio: 0.1
62
+ - Uses bfloat16 precision
63
+ - Maximum prompt length: 256 tokens
64
+ - Maximum completion length: 200 tokens
65
+ - Number of generations per prompt: 16
66
+
67
+ ### Dataset
68
+ - Trained on the GSM8K (Grade School Math 8K) dataset
69
+ - Dataset contains grade-school level math word problems
70
+ - Each problem includes a question and step-by-step solution
71
+
72
+ ## Intended Use
73
+ - Solving mathematical word problems
74
+ - Providing step-by-step reasoning for solutions
75
+ - Educational assistance and math tutoring
76
+
77
+ ## Limitations
78
+ - Limited to the complexity level of GSM8K problems
79
+ - May struggle with problems requiring knowledge beyond the training data
80
+ - Performance depends on proper formatting of input queries
81
+
82
+ ## Training Infrastructure
83
+ - Supports distributed training across multiple GPUs
84
+ - Uses NCCL backend for distributed processing
85
+ - Implements gradient clipping (max norm: 0.1)
86
 
87
+ ## Evaluation
88
+ The model's performance is continuously evaluated during training based on:
89
+ 1. Format adherence to the XML structure
90
+ 2. Mathematical accuracy of answers
91
+ 3. Quality of step-by-step reasoning
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
 
93
+ ## Citation
94
+ If you use this model, please cite both the original GRPO paper and the GSM8K dataset.
95
 
96
  ## Training Details
 
97
  ### Training Data
98
+ The model was trained on the [GSM8K dataset](https://huggingface.co/datasets/openai/gsm8k), which contains 8.5K grade school math word problems.
 
 
 
99
 
100
  ### Training Procedure
101
+ - **Hardware:** Multi-GPU setup with NVIDIA GPUs
102
+ - **Framework:** Hugging Face Transformers, TRL (Transformer Reinforcement Learning)
103
+ - **Optimization:** GRPO with dual reward functions