model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.test.json +0 -0
- eval/prediction.random.dev.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/bert-large-tweetner7-random
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6238958623895862
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6271028037383177
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6207215541165587
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.5754103658637805
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.5760445653768616
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.5751041088351385
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7648665930360984
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7689340813464236
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.760841910489187
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6154274575327208
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6640625
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.5734302023871303
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.5709159092071027
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6168953196783556
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.5321784485961766
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.732943469785575
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.7908653846153846
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.6829268292682927
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/bert-large-tweetner7-random
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_random` split).
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6238958623895862
|
94 |
+
- Precision (micro): 0.6271028037383177
|
95 |
+
- Recall (micro): 0.6207215541165587
|
96 |
+
- F1 (macro): 0.5754103658637805
|
97 |
+
- Precision (macro): 0.5760445653768616
|
98 |
+
- Recall (macro): 0.5751041088351385
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.49146005509641877
|
104 |
+
- creative_work: 0.3972413793103448
|
105 |
+
- event: 0.44788732394366193
|
106 |
+
- group: 0.5767073573078192
|
107 |
+
- location: 0.6721649484536083
|
108 |
+
- person: 0.8116810183451891
|
109 |
+
- product: 0.6307304785894207
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.6141711573096726, 0.6329835528622229]
|
114 |
+
- 95%: [0.6127880547187768, 0.6345997209553179]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.6141711573096726, 0.6329835528622229]
|
117 |
+
- 95%: [0.6127880547187768, 0.6345997209553179]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/bert-large-tweetner7-random/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/bert-large-tweetner7-random/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/bert-large-tweetner7-random")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_random
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: bert-large-cased
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 0.0001
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.15
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/bert-large-tweetner7-random/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"random.dev": {"micro/f1": 0.619047619047619, "micro/f1_ci": {}, "micro/recall": 0.596903363587827, "micro/precision": 0.6428982173663025, "macro/f1": 0.5686540193943024, "macro/f1_ci": {}, "macro/recall": 0.547210195927133, "macro/precision": 0.5921601321577861, "per_entity_metric": {"corporation": {"f1": 0.5444743935309972, "f1_ci": {}, "precision": 0.5674157303370787, "recall": 0.5233160621761658}, "creative_work": {"f1": 0.4155844155844156, "f1_ci": {}, "precision": 0.4383561643835616, "recall": 0.3950617283950617}, "event": {"f1": 0.3593073593073593, "f1_ci": {}, "precision": 0.3824884792626728, "recall": 0.33877551020408164}, "group": {"f1": 0.6086956521739131, "f1_ci": {}, "precision": 0.632398753894081, "recall": 0.5867052023121387}, "location": {"f1": 0.5993485342019543, "f1_ci": {}, "precision": 0.6388888888888888, "recall": 0.5644171779141104}, "person": {"f1": 0.830945558739255, "f1_ci": {}, "precision": 0.8463035019455253, "recall": 0.8161350844277674}, "product": {"f1": 0.6222222222222221, "f1_ci": {}, "precision": 0.639269406392694, "recall": 0.6060606060606061}}}, "2021.test": {"micro/f1": 0.6238958623895862, "micro/f1_ci": {"90": [0.6141711573096726, 0.6329835528622229], "95": [0.6127880547187768, 0.6345997209553179]}, "micro/recall": 0.6207215541165587, "micro/precision": 0.6271028037383177, "macro/f1": 0.5754103658637805, "macro/f1_ci": {"90": [0.565187314674676, 0.5855711118073963], "95": [0.563829302210402, 0.5869723763958868]}, "macro/recall": 0.5751041088351385, "macro/precision": 0.5760445653768616, "per_entity_metric": {"corporation": {"f1": 0.49146005509641877, "f1_ci": {"90": [0.46653944279830356, 0.5156783797722426], "95": [0.4614505665499631, 0.5195247572390868]}, "precision": 0.48743169398907105, "recall": 0.4955555555555556}, "creative_work": {"f1": 0.3972413793103448, "f1_ci": {"90": [0.3643388832934659, 0.431475468975469], "95": [0.357765951797727, 0.4368833727344366]}, "precision": 0.40055632823365783, "recall": 0.39398084815321477}, "event": {"f1": 0.44788732394366193, "f1_ci": {"90": [0.4252921892767356, 0.4712090747178809], "95": [0.42052975286951233, 0.4741356529398811]}, "precision": 0.4626576139670223, "recall": 0.4340309372156506}, "group": {"f1": 0.5767073573078192, "f1_ci": {"90": [0.5553909855557407, 0.5986221015634983], "95": [0.5507048431429983, 0.6039963050868477]}, "precision": 0.5776602775941837, "recall": 0.5757575757575758}, "location": {"f1": 0.6721649484536083, "f1_ci": {"90": [0.6437046042939083, 0.6989743577005144], "95": [0.6382294156836619, 0.7034515355421547]}, "precision": 0.6617050067658998, "recall": 0.6829608938547486}, "person": {"f1": 0.8116810183451891, "f1_ci": {"90": [0.800425398613887, 0.8226651182198794], "95": [0.7974815277796216, 0.8242620017446516]}, "precision": 0.8243346007604563, "recall": 0.799410029498525}, "product": {"f1": 0.6307304785894207, "f1_ci": {"90": [0.6096523222472238, 0.6528996533628258], "95": [0.6046932305919911, 0.6557772793770326]}, "precision": 0.6179664363277394, "recall": 0.6440329218106996}}}, "2020.test": {"micro/f1": 0.6154274575327208, "micro/f1_ci": {"90": [0.5947241888019572, 0.6356762437073024], "95": [0.5903024143830322, 0.6396733847327379]}, "micro/recall": 0.5734302023871303, "micro/precision": 0.6640625, "macro/f1": 0.5709159092071027, "macro/f1_ci": {"90": [0.5485436010515674, 0.5911412312900881], "95": [0.54348814668388, 0.5952871224560826]}, "macro/recall": 0.5321784485961766, "macro/precision": 0.6168953196783556, "per_entity_metric": {"corporation": {"f1": 0.5633802816901409, "f1_ci": {"90": [0.5108901703453305, 0.6114260304694146], "95": [0.5013283378746595, 0.6201379487863938]}, "precision": 0.6097560975609756, "recall": 0.5235602094240838}, "creative_work": {"f1": 0.4281150159744409, "f1_ci": {"90": [0.3629106221339231, 0.4872107567229519], "95": [0.35123805851861367, 0.49881329442767974]}, "precision": 0.5, "recall": 0.3743016759776536}, "event": {"f1": 0.4268774703557312, "f1_ci": {"90": [0.3761945562305827, 0.47865295050923795], "95": [0.36749324466274025, 0.48812845288166423]}, "precision": 0.44813278008298757, "recall": 0.4075471698113208}, "group": {"f1": 0.5335689045936396, "f1_ci": {"90": [0.4815280555531712, 0.5886398331255172], "95": [0.47204810764639515, 0.5993434343434344]}, "precision": 0.592156862745098, "recall": 0.4855305466237942}, "location": {"f1": 0.6198083067092652, "f1_ci": {"90": [0.5512898975732075, 0.6781922675026124], "95": [0.534796626984127, 0.6899004797898276]}, "precision": 0.6554054054054054, "recall": 0.5878787878787879}, "person": {"f1": 0.810375670840787, "f1_ci": {"90": [0.7806688121728075, 0.8346625323604978], "95": [0.7761355449156406, 0.8400027100271004]}, "precision": 0.867816091954023, "recall": 0.7600671140939598}, "product": {"f1": 0.6142857142857142, "f1_ci": {"90": [0.5632209365970393, 0.6650651474676988], "95": [0.5506497316430371, 0.6756231123983224]}, "precision": 0.645, "recall": 0.5863636363636363}}}, "2021.test (span detection)": {"micro/f1": 0.7648665930360984, "micro/f1_ci": {}, "micro/recall": 0.760841910489187, "micro/precision": 0.7689340813464236, "macro/f1": 0.7648665930360984, "macro/f1_ci": {}, "macro/recall": 0.760841910489187, "macro/precision": 0.7689340813464236}, "2020.test (span detection)": {"micro/f1": 0.732943469785575, "micro/f1_ci": {}, "micro/recall": 0.6829268292682927, "micro/precision": 0.7908653846153846, "macro/f1": 0.732943469785575, "macro/f1_ci": {}, "macro/recall": 0.6829268292682927, "macro/precision": 0.7908653846153846}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6154274575327208, "micro/f1_ci": {"90": [0.5947241888019572, 0.6356762437073024], "95": [0.5903024143830322, 0.6396733847327379]}, "micro/recall": 0.5734302023871303, "micro/precision": 0.6640625, "macro/f1": 0.5709159092071027, "macro/f1_ci": {"90": [0.5485436010515674, 0.5911412312900881], "95": [0.54348814668388, 0.5952871224560826]}, "macro/recall": 0.5321784485961766, "macro/precision": 0.6168953196783556, "per_entity_metric": {"corporation": {"f1": 0.5633802816901409, "f1_ci": {"90": [0.5108901703453305, 0.6114260304694146], "95": [0.5013283378746595, 0.6201379487863938]}, "precision": 0.6097560975609756, "recall": 0.5235602094240838}, "creative_work": {"f1": 0.4281150159744409, "f1_ci": {"90": [0.3629106221339231, 0.4872107567229519], "95": [0.35123805851861367, 0.49881329442767974]}, "precision": 0.5, "recall": 0.3743016759776536}, "event": {"f1": 0.4268774703557312, "f1_ci": {"90": [0.3761945562305827, 0.47865295050923795], "95": [0.36749324466274025, 0.48812845288166423]}, "precision": 0.44813278008298757, "recall": 0.4075471698113208}, "group": {"f1": 0.5335689045936396, "f1_ci": {"90": [0.4815280555531712, 0.5886398331255172], "95": [0.47204810764639515, 0.5993434343434344]}, "precision": 0.592156862745098, "recall": 0.4855305466237942}, "location": {"f1": 0.6198083067092652, "f1_ci": {"90": [0.5512898975732075, 0.6781922675026124], "95": [0.534796626984127, 0.6899004797898276]}, "precision": 0.6554054054054054, "recall": 0.5878787878787879}, "person": {"f1": 0.810375670840787, "f1_ci": {"90": [0.7806688121728075, 0.8346625323604978], "95": [0.7761355449156406, 0.8400027100271004]}, "precision": 0.867816091954023, "recall": 0.7600671140939598}, "product": {"f1": 0.6142857142857142, "f1_ci": {"90": [0.5632209365970393, 0.6650651474676988], "95": [0.5506497316430371, 0.6756231123983224]}, "precision": 0.645, "recall": 0.5863636363636363}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6238958623895862, "micro/f1_ci": {"90": [0.6141711573096726, 0.6329835528622229], "95": [0.6127880547187768, 0.6345997209553179]}, "micro/recall": 0.6207215541165587, "micro/precision": 0.6271028037383177, "macro/f1": 0.5754103658637805, "macro/f1_ci": {"90": [0.565187314674676, 0.5855711118073963], "95": [0.563829302210402, 0.5869723763958868]}, "macro/recall": 0.5751041088351385, "macro/precision": 0.5760445653768616, "per_entity_metric": {"corporation": {"f1": 0.49146005509641877, "f1_ci": {"90": [0.46653944279830356, 0.5156783797722426], "95": [0.4614505665499631, 0.5195247572390868]}, "precision": 0.48743169398907105, "recall": 0.4955555555555556}, "creative_work": {"f1": 0.3972413793103448, "f1_ci": {"90": [0.3643388832934659, 0.431475468975469], "95": [0.357765951797727, 0.4368833727344366]}, "precision": 0.40055632823365783, "recall": 0.39398084815321477}, "event": {"f1": 0.44788732394366193, "f1_ci": {"90": [0.4252921892767356, 0.4712090747178809], "95": [0.42052975286951233, 0.4741356529398811]}, "precision": 0.4626576139670223, "recall": 0.4340309372156506}, "group": {"f1": 0.5767073573078192, "f1_ci": {"90": [0.5553909855557407, 0.5986221015634983], "95": [0.5507048431429983, 0.6039963050868477]}, "precision": 0.5776602775941837, "recall": 0.5757575757575758}, "location": {"f1": 0.6721649484536083, "f1_ci": {"90": [0.6437046042939083, 0.6989743577005144], "95": [0.6382294156836619, 0.7034515355421547]}, "precision": 0.6617050067658998, "recall": 0.6829608938547486}, "person": {"f1": 0.8116810183451891, "f1_ci": {"90": [0.800425398613887, 0.8226651182198794], "95": [0.7974815277796216, 0.8242620017446516]}, "precision": 0.8243346007604563, "recall": 0.799410029498525}, "product": {"f1": 0.6307304785894207, "f1_ci": {"90": [0.6096523222472238, 0.6528996533628258], "95": [0.6046932305919911, 0.6557772793770326]}, "precision": 0.6179664363277394, "recall": 0.6440329218106996}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.732943469785575, "micro/f1_ci": {}, "micro/recall": 0.6829268292682927, "micro/precision": 0.7908653846153846, "macro/f1": 0.732943469785575, "macro/f1_ci": {}, "macro/recall": 0.6829268292682927, "macro/precision": 0.7908653846153846}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7648665930360984, "micro/f1_ci": {}, "micro/recall": 0.760841910489187, "micro/precision": 0.7689340813464236, "macro/f1": 0.7648665930360984, "macro/f1_ci": {}, "macro/recall": 0.760841910489187, "macro/precision": 0.7689340813464236}
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.random.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_random", "dataset_name": null, "local_dataset": null, "model": "bert-large-cased", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 0.0001, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.15, "max_grad_norm": 1}
|