--- language: - multilingual license: apache-2.0 --- # Model Card for Sindibad-7B # Table of Contents 0. [TL;DR](#TL;DR) 1. [Model Details](#model-details) 2. [Usage](#usage) 3. [Training Details](#training-details) 4. [Evaluation](#evaluation) # TL;DR # Model Details ## Model Description - **Model type:** Language model - **Language(s) (NLP):** English - **License:** Apache 2.0 # Usage Find below some example scripts on how to use the model in `transformers` (Make sure to have the latest transformers, or the one built from source): ## Using the Pytorch model ### Running the model on a CPU
Click to expand ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("tiiuae/sindibad-7b") model = AutoModelForCausalLM.from_pretrained("tiiuae/sindibad-7b") input_text = "Question: How many hours in one day? Answer: " input_ids = tokenizer(input_text, return_tensors="pt").input_ids outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ```
### Running the model on a GPU
Click to expand ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("tiiuae/sindibad-7b") model = AutoModelForCausalLM.from_pretrained("tiiuae/sindibad-7b", device_map="auto") input_text = "Question: How many hours in one day? Answer: " input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ```
### Running the model on a GPU using different precisions #### FP16
Click to expand ```python # pip install accelerate import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("tiiuae/sindibad-7b") model = AutoModelForCausalLM.from_pretrained("tiiuae/sindibad-7b", device_map="auto", torch_dtype=torch.float16) input_text = "Question: How many hours in one day? Answer: " input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ```
#### 4-bit
Click to expand ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig tokenizer = AutoTokenizer.from_pretrained("tiiuae/sindibad-7b") model = AutoModelForCausalLM.from_pretrained("tiiuae/sindibad-7b", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)) input_text = "Question: How many hours in one day? Answer: " input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ```
# Training Details Jingwei ## Training Data Guillaume ## Training Procedure The model was trained AdamW optimizer, WSD (warmup-stable-decay) learning rate schedule, and a batch size rampup from   \\(b_{\mathrm{min}}=128\times2048\\)   to   \\(b_{\mathrm{max}}=2048\times2048\\)   tokens during the first 50 GT of the training. In the stable phase, we used maximal learning rate   \\(\eta_{\mathrm{max}}=6.4 \times 10^{-4}\\)   and decayed it to the minimal value   \\(\eta_{\mathrm{min}}=\eta_{\mathrm{max}} / 256\\)   with exponential schedule over 500 GT. Also, we applied *BatchScaling* during the rampup — rescaling learning rate   \\(\eta\\)  so that the Adam noise temperature   \\(T_{\mathrm{noise}}\equiv\eta / \sqrt{b}\\)   is kept cosntant. # Evaluation ## Benchmarks We evaluate our model on all benchmarks of the leaderboard's version 2 using the `lm-evaluation-harness` package, and we evaluate it on the benchmarks of version 1 using `lighteval`. | model_name | IFEval | BBH | MATH LvL5 | GPQA | MUSR | MMLU-PRO | **Average L2** | ARC | HellaSwag | MMLU | Winogrande | TruthfulQA | GSM8K | **Average L1** | |------------------------------|--------|-------|-----------|-------|-------|----------|----------------|-------|-----------|-------|------------|------------|-------|----------------| | `meta-llama/Meta-Llama-3-8B` | 14.55 | 24.50 | 3.25 | 7.38 | 6.24 | 24.55 | 13.41 | 60.24 | 82.23 | 66.70 | 78.45 | 42.93 | 45.19 | 62.62 | | `tiiuae/falcon2-11B` | 32.61 | 21.94 | 2.34 | 2.8 | 7.53 | 15.44 | 13.78 | 59.73 | 82.91 | 58.37 | 78.30 | 52.56 | 53.83 | **64.28** | | `mistralai/Mistral-7B-v0.1` | 23.86 | 22.02 | 2.49 | 5.59 | 10.68 | 22.36 | 14.50 | 59.98 | 83.31 | 64.16 | 78.37 | 42.15 | 37.83 | 60.97 | | `Zyphra/Zamba-7B-v1` | - | - | - | - | - | - | - | 46.48 | 80.24 | 57.72 | 76.4 | - | - | - | | Ours | 32.16 | 21.07 | 4.08 | 10.18 | 6.97 | 13.43 | **14.65** | 61.69 | 80.63 | 61.05 | 74.03 | 53.60 | 51.86 | 63.81 | ## Throughput This model can achieve comparable throughput and performance compared to other transformer based models that use optimized kernels such as Flash Attention 2. Make sure to install the optimized Mamba kernels with the following commands: ```bash pip install "causal-conv1d>=1.4.0" mamba-ssm ``` Refer to our technical report for more details about performance evaluation.