File size: 11,054 Bytes
430712c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
#! /usr/bin/python
# -*- encoding: utf-8 -*-
import torch
import numpy
import random
import pdb
import os
import threading
import time
import math
import glob
# import soundfile
from scipy import signal
import soundfile
from torch.utils.data import Dataset, DataLoader
import torch.distributed as dist
def round_down(num, divisor):
return num - (num%divisor)
def worker_init_fn(worker_id):
numpy.random.seed(numpy.random.get_state()[1][0] + worker_id)
def loadWAV(filename, max_frames, evalmode=True, num_eval=5):
# Maximum audio length
max_audio = max_frames * 160 + 240
# Read wav file and convert to torch tensor
audio, sample_rate = soundfile.read(filename)
audiosize = audio.shape[0]
if audiosize <= max_audio:
shortage = max_audio - audiosize + 1
audio = numpy.pad(audio, (0, shortage), 'wrap')
audiosize = audio.shape[0]
if evalmode:
startframe = numpy.linspace(0,audiosize-max_audio,num=num_eval)
else:
startframe = numpy.array([numpy.int64(random.random()*(audiosize-max_audio))])
feats = []
if evalmode and max_frames == 0:
feats.append(audio)
else:
for asf in startframe:
feats.append(audio[int(asf):int(asf)+max_audio])
feat = numpy.stack(feats,axis=0).astype(float)
return feat;
class AugmentWAV(object):
def __init__(self, musan_path, rir_path, max_frames):
self.max_frames = max_frames
self.max_audio = max_audio = max_frames * 160 + 240
self.noisetypes = ['noise','speech','music']
self.noisesnr = {'noise':[0,15],'speech':[13,20],'music':[5,15]}
self.numnoise = {'noise':[1,1], 'speech':[3,8], 'music':[1,1] }
self.noiselist = {}
augment_files = glob.glob(os.path.join(musan_path,'*/*/*.wav'));
for file in augment_files:
if not file.split('/')[-3] in self.noiselist:
self.noiselist[file.split('/')[-3]] = []
self.noiselist[file.split('/')[-3]].append(file)
self.rir_files = glob.glob(os.path.join(rir_path,'*/*/*.wav'));
def additive_noise(self, noisecat, audio):
clean_db = 10 * numpy.log10(numpy.mean(audio ** 2)+1e-4)
numnoise = self.numnoise[noisecat]
noiselist = random.sample(self.noiselist[noisecat], random.randint(numnoise[0],numnoise[1]))
noises = []
for noise in noiselist:
noiseaudio = loadWAV(noise, self.max_frames, evalmode=False)
noise_snr = random.uniform(self.noisesnr[noisecat][0],self.noisesnr[noisecat][1])
noise_db = 10 * numpy.log10(numpy.mean(noiseaudio[0] ** 2)+1e-4)
noises.append(numpy.sqrt(10 ** ((clean_db - noise_db - noise_snr) / 10)) * noiseaudio)
return numpy.sum(numpy.concatenate(noises,axis=0),axis=0,keepdims=True) + audio
def reverberate(self, audio):
rir_file = random.choice(self.rir_files)
rir, fs = soundfile.read(rir_file)
rir = numpy.expand_dims(rir.astype(float),0)
rir = rir / numpy.sqrt(numpy.sum(rir**2))
return signal.convolve(audio, rir, mode='full')[:,:self.max_audio]
class train_dataset_loader(Dataset):
def __init__(self, train_list, augment, musan_path, rir_path, max_frames, train_path, **kwargs):
self.augment_wav = AugmentWAV(musan_path=musan_path, rir_path=rir_path, max_frames = max_frames)
self.train_list = train_list
self.max_frames = max_frames;
self.musan_path = musan_path
self.rir_path = rir_path
self.augment = augment
# Read training files
with open(train_list) as dataset_file:
lines = dataset_file.readlines();
# Make a dictionary of ID names and ID indices
dictkeys = list(set([x.split()[0] for x in lines]))
dictkeys.sort()
dictkeys = { key : ii for ii, key in enumerate(dictkeys) }
# Parse the training list into file names and ID indices
self.data_list = []
self.data_label = []
for lidx, line in enumerate(lines):
data = line.strip().split();
speaker_label = dictkeys[data[0]];
filename = os.path.join(train_path,data[1]);
self.data_label.append(speaker_label)
self.data_list.append(filename)
def __getitem__(self, indices):
feat_clean = []
feat = []
for index in indices:
try:
audio_clean = loadWAV(self.data_list[index], self.max_frames, evalmode=False)
except:
print(self.data_list[index])
if len(audio_clean.shape) == 3:
print(self.data_list[index])
if self.augment:
augtype = random.randint(0,5)
if augtype == 0:
audio = audio_clean
elif augtype == 1:
audio = self.augment_wav.reverberate(audio_clean)
elif augtype == 2:
audio = self.augment_wav.additive_noise('music',audio_clean)
elif augtype == 3:
audio = self.augment_wav.additive_noise('speech',audio_clean)
elif augtype == 4:
audio = self.augment_wav.additive_noise('noise',audio_clean)
elif augtype == 5:
audio = self.augment_wav.additive_noise('speech',audio_clean)
audio = self.augment_wav.additive_noise('music',audio_clean)
feat_clean.append(audio_clean)
feat.append(audio)
feat_clean = numpy.concatenate(feat_clean, axis=0)
feat = numpy.concatenate(feat, axis=0)
return torch.FloatTensor(feat_clean), torch.FloatTensor(feat), self.data_label[index], self.data_list[index]
def __len__(self):
return len(self.data_list)
class test_dataset_loader(Dataset):
def __init__(self, test_list, test_path, eval_frames, num_eval, **kwargs):
self.max_frames = eval_frames;
self.num_eval = num_eval
self.test_path = test_path
self.test_list = test_list
def __getitem__(self, index):
# print(self.test_list[index])
audio = loadWAV(os.path.join(self.test_path,self.test_list[index]), self.max_frames, evalmode=True, num_eval=self.num_eval)
audio2 = loadWAV(os.path.join(self.test_path,self.test_list[index]), 0, evalmode=True, num_eval=self.num_eval)
return torch.FloatTensor(audio), torch.FloatTensor(audio2), self.test_list[index]
# return torch.FloatTensor(audio2), self.test_list[index]
def __len__(self):
return len(self.test_list)
class train_dataset_sampler(torch.utils.data.Sampler):
def __init__(self, data_source, nPerSpeaker, max_seg_per_spk, batch_size, distributed, seed, **kwargs):
self.data_label = data_source.data_label;
self.nPerSpeaker = nPerSpeaker;
self.max_seg_per_spk = max_seg_per_spk;
self.batch_size = batch_size;
self.epoch = 0;
self.seed = seed;
self.distributed = distributed;
def __iter__(self):
g = torch.Generator()
g.manual_seed(self.seed + self.epoch)
indices = torch.randperm(len(self.data_label), generator=g).tolist()
data_dict = {}
# Sort into dictionary of file indices for each ID
for index in indices:
speaker_label = self.data_label[index]
if not (speaker_label in data_dict):
data_dict[speaker_label] = [];
data_dict[speaker_label].append(index);
## Group file indices for each class
dictkeys = list(data_dict.keys());
dictkeys.sort()
lol = lambda lst, sz: [lst[i:i+sz] for i in range(0, len(lst), sz)]
flattened_list = []
flattened_label = []
for findex, key in enumerate(dictkeys):
data = data_dict[key]
numSeg = round_down(min(len(data),self.max_seg_per_spk),self.nPerSpeaker)
rp = lol(numpy.arange(numSeg),self.nPerSpeaker)
flattened_label.extend([findex] * (len(rp)))
for indices in rp:
flattened_list.append([data[i] for i in indices])
## Mix data in random order
mixid = torch.randperm(len(flattened_label), generator=g).tolist()
mixlabel = []
mixmap = []
## Prevent two pairs of the same speaker in the same batch
for ii in mixid:
startbatch = round_down(len(mixlabel), self.batch_size)
if flattened_label[ii] not in mixlabel[startbatch:]:
mixlabel.append(flattened_label[ii])
mixmap.append(ii)
mixed_list = [flattened_list[i] for i in mixmap]
## Divide data to each GPU
if self.distributed:
total_size = round_down(len(mixed_list), self.batch_size * dist.get_world_size())
start_index = int ( ( dist.get_rank() ) / dist.get_world_size() * total_size )
end_index = int ( ( dist.get_rank() + 1 ) / dist.get_world_size() * total_size )
self.num_samples = end_index - start_index
return iter(mixed_list[start_index:end_index])
else:
total_size = round_down(len(mixed_list), self.batch_size)
self.num_samples = total_size
return iter(mixed_list[:total_size])
def __len__(self) -> int:
return self.num_samples
def set_epoch(self, epoch: int) -> None:
self.epoch = epoch
if __name__ == '__main__':
train_dataset = train_dataset_loader(train_list='/mnt/proj3/open-24-5/pengjy_new/WavLM_Adapter/CNCeleb_lst/CNCeleb_trainlist_200spk.txt',
augment=False,
musan_path='/mnt/proj3/open-24-5/pengjy_new/musan_split/',
rir_path='/mnt/proj3/open-24-5/plchot/data_augment/16kHz/simulated_rirs/',
max_frames=300,
train_path='/mnt/proj3/open-24-5/pengjy_new/Data/CN-Celeb_flac/data',
)
train_sampler = train_dataset_sampler(train_dataset, nPerSpeaker=1, max_seg_per_spk=500, batch_size=100, distributed=False,seed=120)
# train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=100,
num_workers=10,
sampler=train_sampler,
pin_memory=True,
drop_last=True,
)
for data, data_label in train_loader:
print(data.shape)
data = data.transpose(1,0)
print(data.shape)
quit() |