theblackcat102 commited on
Commit
32ada3e
·
verified ·
1 Parent(s): 44713fe

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "LLaMA-MoD",
3
+ "architectures": [
4
+ "LlamaMoDForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_llama.LlamaMoDConfig",
10
+ "AutoModel": "modeling_llama.MiniCPMModelLlamaMoDModel",
11
+ "AutoModelForCausalLM": "modeling_llama.LlamaMoDForCausalLM"
12
+ },
13
+ "bos_token_id": 1,
14
+ "capacity_load": 0.5,
15
+ "eos_token_id": 2,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 2048,
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 5632,
20
+ "max_position_embeddings": 2048,
21
+ "mod_method": "mod_dual",
22
+ "model_type": "llama",
23
+ "num_attention_heads": 32,
24
+ "num_hidden_layers": 22,
25
+ "num_key_value_heads": 4,
26
+ "pretraining_tp": 1,
27
+ "rms_norm_eps": 1e-05,
28
+ "rope_scaling": null,
29
+ "rope_theta": 10000.0,
30
+ "router_aux_loss_coef": 0.005,
31
+ "setup_layer_mod": [
32
+ false,
33
+ false,
34
+ false,
35
+ false,
36
+ false,
37
+ true,
38
+ false,
39
+ true,
40
+ false,
41
+ true,
42
+ false,
43
+ true,
44
+ false,
45
+ true,
46
+ false,
47
+ true,
48
+ false,
49
+ true,
50
+ false,
51
+ true,
52
+ false,
53
+ false
54
+ ],
55
+ "tie_word_embeddings": false,
56
+ "torch_dtype": "bfloat16",
57
+ "transformers_version": "4.40.0.dev0",
58
+ "use_cache": true,
59
+ "vocab_size": 32000
60
+ }
configuration_llama.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ LLaMA model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+
29
+
30
+ class LlamaMoDConfig(PretrainedConfig):
31
+ r"""
32
+ This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
33
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
34
+ defaults will yield a similar configuration to that of the LLaMA-7B.
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+
40
+ Args:
41
+ vocab_size (`int`, *optional*, defaults to 32000):
42
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
43
+ `inputs_ids` passed when calling [`LlamaModel`]
44
+ hidden_size (`int`, *optional*, defaults to 4096):
45
+ Dimension of the hidden representations.
46
+ intermediate_size (`int`, *optional*, defaults to 11008):
47
+ Dimension of the MLP representations.
48
+ num_hidden_layers (`int`, *optional*, defaults to 32):
49
+ Number of hidden layers in the Transformer decoder.
50
+ num_attention_heads (`int`, *optional*, defaults to 32):
51
+ Number of attention heads for each attention layer in the Transformer decoder.
52
+ num_key_value_heads (`int`, *optional*):
53
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
54
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
55
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
56
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
57
+ by meanpooling all the original heads within that group. For more details checkout [this
58
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
59
+ `num_attention_heads`.
60
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
61
+ The non-linear activation function (function or string) in the decoder.
62
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
63
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
64
+ Llama 2 up to 4096, CodeLlama up to 16384.
65
+ initializer_range (`float`, *optional*, defaults to 0.02):
66
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
67
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
68
+ The epsilon used by the rms normalization layers.
69
+ use_cache (`bool`, *optional*, defaults to `True`):
70
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
71
+ relevant if `config.is_decoder=True`.
72
+ pad_token_id (`int`, *optional*):
73
+ Padding token id.
74
+ bos_token_id (`int`, *optional*, defaults to 1):
75
+ Beginning of stream token id.
76
+ eos_token_id (`int`, *optional*, defaults to 2):
77
+ End of stream token id.
78
+ pretraining_tp (`int`, *optional*, defaults to 1):
79
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
80
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
81
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
82
+ issue](https://github.com/pytorch/pytorch/issues/76232).
83
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
84
+ Whether to tie weight embeddings
85
+ rope_theta (`float`, *optional*, defaults to 10000.0):
86
+ The base period of the RoPE embeddings.
87
+ rope_scaling (`Dict`, *optional*):
88
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
89
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
90
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
91
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
92
+ these scaling strategies behave:
93
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
94
+ experimental feature, subject to breaking API changes in future versions.
95
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
96
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
97
+ attention_dropout (`float`, *optional*, defaults to 0.0):
98
+ The dropout ratio for the attention probabilities.
99
+
100
+ ```python
101
+ >>> from transformers import LlamaModel, LlamaConfig
102
+
103
+ >>> # Initializing a LLaMA llama-7b style configuration
104
+ >>> configuration = LlamaConfig()
105
+
106
+ >>> # Initializing a model from the llama-7b style configuration
107
+ >>> model = LlamaModel(configuration)
108
+
109
+ >>> # Accessing the model configuration
110
+ >>> configuration = model.config
111
+ ```"""
112
+
113
+ model_type = "llama"
114
+ keys_to_ignore_at_inference = ["past_key_values"]
115
+
116
+ def __init__(
117
+ self,
118
+ vocab_size=32000,
119
+ hidden_size=4096,
120
+ intermediate_size=11008,
121
+ num_hidden_layers=32,
122
+ num_attention_heads=32,
123
+ num_key_value_heads=None,
124
+ hidden_act="silu",
125
+ max_position_embeddings=2048,
126
+ initializer_range=0.02,
127
+ rms_norm_eps=1e-6,
128
+ use_cache=True,
129
+ pad_token_id=None,
130
+ bos_token_id=1,
131
+ eos_token_id=2,
132
+ pretraining_tp=1,
133
+ tie_word_embeddings=False,
134
+ rope_theta=10000.0,
135
+ rope_scaling=None,
136
+ attention_bias=False,
137
+ attention_dropout=0.0,
138
+ mlp_bias=False,
139
+ head_dim=None,
140
+ interleave_mod_layer=False,
141
+ router_aux_loss_coef=1e-4,
142
+ mod_method='none',
143
+ **kwargs,
144
+ ):
145
+ self.setup_layer_mod = [False]*num_hidden_layers
146
+ if interleave_mod_layer:
147
+ for idx in range(num_hidden_layers):
148
+ if idx % 2:
149
+ self.setup_layer_mod[idx] = True
150
+ self.mod_method = mod_method
151
+ self.router_aux_loss_coef = router_aux_loss_coef
152
+ self.vocab_size = vocab_size
153
+ self.max_position_embeddings = max_position_embeddings
154
+ self.hidden_size = hidden_size
155
+ self.intermediate_size = intermediate_size
156
+ self.num_hidden_layers = num_hidden_layers
157
+ self.num_attention_heads = num_attention_heads
158
+
159
+ # for backward compatibility
160
+ if num_key_value_heads is None:
161
+ num_key_value_heads = num_attention_heads
162
+
163
+ self.num_key_value_heads = num_key_value_heads
164
+ self.hidden_act = hidden_act
165
+ self.initializer_range = initializer_range
166
+ self.rms_norm_eps = rms_norm_eps
167
+ self.pretraining_tp = pretraining_tp
168
+ self.use_cache = use_cache
169
+ self.rope_theta = rope_theta
170
+ self.rope_scaling = rope_scaling
171
+ self._rope_scaling_validation()
172
+ self.attention_bias = attention_bias
173
+ self.attention_dropout = attention_dropout
174
+ self.mlp_bias = mlp_bias
175
+ self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
176
+
177
+ super().__init__(
178
+ pad_token_id=pad_token_id,
179
+ bos_token_id=bos_token_id,
180
+ eos_token_id=eos_token_id,
181
+ tie_word_embeddings=tie_word_embeddings,
182
+ **kwargs,
183
+ )
184
+
185
+ def _rope_scaling_validation(self):
186
+ """
187
+ Validate the `rope_scaling` configuration.
188
+ """
189
+ if self.rope_scaling is None:
190
+ return
191
+
192
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
193
+ raise ValueError(
194
+ "`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
195
+ )
196
+ rope_scaling_type = self.rope_scaling.get("type", None)
197
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
198
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
199
+ raise ValueError(
200
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
201
+ )
202
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
203
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.40.0.dev0"
6
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e578f3ca6f1dadbfe93f248578a20630aa5c519d750239834b08c254b003f1e
3
+ size 2233743328
modeling_llama.py ADDED
@@ -0,0 +1,1252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """PyTorch LLaMA model."""
21
+ import json
22
+ import math
23
+ import warnings
24
+ from typing import List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.nn.functional as F
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+
32
+ from transformers.activations import ACT2FN
33
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
34
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
35
+ from transformers.modeling_outputs import (
36
+ BaseModelOutputWithPast,
37
+ CausalLMOutputWithPast,
38
+ MoeModelOutputWithPast, MoeCausalLMOutputWithPast,
39
+ QuestionAnsweringModelOutput,
40
+ SequenceClassifierOutputWithPast,
41
+ )
42
+ from transformers.modeling_utils import PreTrainedModel
43
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
44
+ from transformers.utils import (
45
+ add_start_docstrings,
46
+ add_start_docstrings_to_model_forward,
47
+ is_flash_attn_2_available,
48
+ is_flash_attn_greater_or_equal_2_10,
49
+ logging,
50
+ replace_return_docstrings,
51
+ )
52
+ # we just reuse everything we don't modified
53
+ from transformers.models.llama.modeling_llama import (
54
+ LlamaRMSNorm, LlamaRotaryEmbedding,
55
+ LlamaLinearScalingRotaryEmbedding,
56
+ LlamaDynamicNTKScalingRotaryEmbedding,
57
+ LlamaAttention,
58
+ LlamaMLP,
59
+ LlamaFlashAttention2,
60
+ LlamaSdpaAttention,
61
+ LlamaDecoderLayer
62
+ )
63
+ from .configuration_llama import LlamaMoDConfig
64
+
65
+
66
+ if is_flash_attn_2_available():
67
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
68
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
69
+
70
+
71
+ logger = logging.get_logger(__name__)
72
+
73
+ _CONFIG_FOR_DOC = "LlamaMoDConfig"
74
+
75
+
76
+ def _get_unpad_data(attention_mask):
77
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
78
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
79
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
80
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
81
+ return (
82
+ indices,
83
+ cu_seqlens,
84
+ max_seqlen_in_batch,
85
+ )
86
+
87
+
88
+ ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
89
+
90
+ LLAMA_ATTENTION_CLASSES = {
91
+ "eager": LlamaAttention,
92
+ "flash_attention_2": LlamaFlashAttention2,
93
+ "sdpa": LlamaSdpaAttention,
94
+ }
95
+
96
+ def dual_router_aux_loss(
97
+ gate_logits: torch.Tensor, num_experts: torch.Tensor = 40, capacity_load=5, attention_mask: Optional[torch.Tensor] = None
98
+ ) -> float:
99
+ r"""
100
+ Computes auxiliary load balancing loss as in Layer wise mode - implemented in Pytorch.
101
+
102
+ Modified from Switch Transformer (https://arxiv.org/abs/2101.03961), I mean mixtral model.
103
+ This function implements the loss function presented in equations (4) - (6) of the paper.
104
+ It aims at penalizing cases where the routing between experts is too unbalanced.
105
+
106
+ Args:
107
+ gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
108
+ Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
109
+ shape [batch_size X sequence_length, num_experts].
110
+ attention_mask (`torch.Tensor`, None):
111
+ The attention_mask used in forward function
112
+ shape [batch_size X sequence_length] if not None.
113
+ num_experts (`int`):
114
+ Number of layers
115
+ top_k (`int`):
116
+ Number of experts (capacility load * num_experts)
117
+
118
+ Returns:
119
+ The auxiliary loss.
120
+ """
121
+ if gate_logits is None or not isinstance(gate_logits, tuple):
122
+ return 0
123
+
124
+ bce_loss = nn.BCEWithLogitsLoss()
125
+ if isinstance(gate_logits, tuple):
126
+ compute_device = gate_logits[0].device
127
+ concatenated_gate_logits = torch.cat([layer_gate.unsqueeze(-1).to(compute_device) for layer_gate in gate_logits], dim=-1)
128
+ seq_len = concatenated_gate_logits.shape[1]
129
+ top_k = int(capacity_load*seq_len)
130
+ bs = concatenated_gate_logits.shape[0]
131
+ # concatenated_gate_logits : bs x seq_len x [ route logits, mlp router pred ] x layers
132
+ routing_weights = torch.nn.functional.softmax(concatenated_gate_logits[:, :, 0, :], dim=1)
133
+ # routing_weights = routing_weights
134
+ _, selected_tokens = torch.topk(routing_weights, top_k, dim=1)
135
+ pred_logits = concatenated_gate_logits[:, :, 1, :]
136
+ router_targets = torch.zeros_like(pred_logits).view(-1)
137
+ router_targets[selected_tokens.view(-1)] = 1.0
138
+ loss = bce_loss(pred_logits, router_targets.view(bs, seq_len, -1))
139
+ return loss
140
+
141
+ class LlamaMoDDuaRouter(nn.Module):
142
+ # implement the prediction inside this instead to make sure weights are transferable
143
+ # Implement method 1
144
+
145
+ def __init__(self, config: LlamaMoDConfig, layer_idx: int):
146
+ super().__init__()
147
+ self.hidden_size = config.hidden_size
148
+ self.layer_idx = layer_idx
149
+ self.capacity_factor = config.capacity_load
150
+ self.dynamic_skip = config.setup_layer_mod[layer_idx]
151
+ if self.dynamic_skip:
152
+ self.mod_router = nn.Linear(self.hidden_size, 1, bias=False)
153
+ # used in inference instead
154
+ self.mlp_router = nn.Sequential(
155
+ nn.Linear(self.hidden_size, self.hidden_size//2),
156
+ nn.SiLU(),
157
+ nn.Linear(self.hidden_size//2, 1, bias=False)
158
+ )
159
+
160
+ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
161
+
162
+ self.mlp = LlamaMLP(config)
163
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
164
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
165
+
166
+ def forward(
167
+ self,
168
+ hidden_states: torch.Tensor,
169
+ attention_mask: Optional[torch.Tensor] = None,
170
+ position_ids: Optional[torch.LongTensor] = None,
171
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
172
+ output_attentions: Optional[bool] = False,
173
+ use_cache: Optional[bool] = False,
174
+ cache_position: Optional[torch.LongTensor] = None,
175
+ **kwargs,
176
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
177
+ """
178
+ Args:
179
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
180
+ attention_mask (`torch.FloatTensor`, *optional*):
181
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
182
+ query_sequence_length, key_sequence_length)` if default attention is used.
183
+ output_attentions (`bool`, *optional*):
184
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
185
+ returned tensors for more detail.
186
+ use_cache (`bool`, *optional*):
187
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
188
+ (see `past_key_values`).
189
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
190
+ """
191
+ if "padding_mask" in kwargs:
192
+ warnings.warn(
193
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
194
+ )
195
+
196
+ initial_residual = hidden_states
197
+ if self.dynamic_skip:
198
+ residual = hidden_states
199
+ seq_len = hidden_states.shape[1]
200
+ route = torch.softmax(self.mod_router(hidden_states), dim=1)
201
+ mlp_router_logits = self.mlp_router(hidden_states)
202
+ if not self.training:
203
+ # use mlp for during inference
204
+ _old_router = route
205
+ route = torch.sigmoid(mlp_router_logits)
206
+ hidden_states = self.input_layernorm(hidden_states)
207
+
208
+ if not self.training and hidden_states.shape[1] == 1 and hidden_states.shape[0] == 1:
209
+ # TODO: fix this broke when batch is > 1
210
+ if route[-1] > 0.5:
211
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
212
+ hidden_states=hidden_states,
213
+ attention_mask=attention_mask,
214
+ position_ids=position_ids,
215
+ past_key_value=past_key_value,
216
+ output_attentions=output_attentions,
217
+ use_cache=use_cache,
218
+ **kwargs,
219
+ )
220
+ hidden_states = residual + hidden_states
221
+ # Fully Connected
222
+ residual = hidden_states
223
+ hidden_states = self.post_attention_layernorm(hidden_states)
224
+ hidden_states = self.mlp(hidden_states)
225
+ hidden_states = residual + hidden_states
226
+ hidden_states *= route
227
+ else:
228
+ hidden_states = initial_residual
229
+ self_attn_weights = None
230
+ present_key_value = None
231
+ else:
232
+ # There should be a sigmoid version where we sample the route based on > 0.5
233
+ # but this doesn't really work mainly in batch inference
234
+ acc_route_choice = torch.cumsum(route > 0.5, dim=-1)
235
+ min_top_k = max(int(self.capacity_factor*seq_len), 2)
236
+ top_k = max(torch.max(acc_route_choice), min_top_k)
237
+ weights, selected_tokens = torch.topk(route, top_k, dim=1, sorted=False)
238
+ # reorder back to original position?
239
+ selected_tokens, index = torch.sort(selected_tokens, dim=1)
240
+ weights = torch.gather(weights, dim=1, index=index)
241
+ indices_expanded = selected_tokens.expand(-1, -1, self.hidden_size)
242
+ sub_hidden_states = torch.gather(hidden_states, 1, indices_expanded)
243
+ sub_position_ids = position_ids[: , :top_k]
244
+ if len(attention_mask.shape) == 4:
245
+ sub_attention_mask = attention_mask[:, :, :top_k,:top_k]
246
+ else:
247
+ sub_attention_mask = attention_mask[:, :top_k]
248
+
249
+ residual = sub_hidden_states
250
+
251
+ sub_hidden_states, attn_weights, present_key_value = self.self_attn(
252
+ hidden_states=sub_hidden_states,
253
+ attention_mask=sub_attention_mask,
254
+ position_ids=sub_position_ids,
255
+ past_key_value=past_key_value,
256
+ output_attentions=output_attentions,
257
+ use_cache=use_cache,
258
+ **kwargs,
259
+ )
260
+ if not self.training:
261
+ print(int(top_k), seq_len, self.layer_idx)
262
+ print(selected_tokens.flatten())
263
+ print(_old_router.flatten())
264
+ print(route.flatten())
265
+
266
+ sub_hidden_states = residual + sub_hidden_states
267
+ sub_residual = sub_hidden_states
268
+ # MLP
269
+ sub_hidden_states = self.post_attention_layernorm(sub_hidden_states)
270
+ sub_hidden_states = self.mlp(sub_hidden_states)
271
+ sub_hidden_states = sub_residual + sub_hidden_states
272
+
273
+ hidden_states = torch.scatter(
274
+ initial_residual,
275
+ dim=1,
276
+ index=indices_expanded,
277
+ src=sub_hidden_states * weights,
278
+ )
279
+ else:
280
+ residual = initial_residual
281
+ hidden_states = self.input_layernorm(hidden_states)
282
+
283
+ # Self Attention
284
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
285
+ hidden_states=hidden_states,
286
+ attention_mask=attention_mask,
287
+ position_ids=position_ids,
288
+ past_key_value=past_key_value,
289
+ output_attentions=output_attentions,
290
+ use_cache=use_cache,
291
+ **kwargs,
292
+ )
293
+ hidden_states = residual + hidden_states
294
+
295
+ # Fully Connected
296
+ residual = hidden_states
297
+ hidden_states = self.post_attention_layernorm(hidden_states)
298
+ hidden_states = self.mlp(hidden_states)
299
+ hidden_states = residual + hidden_states
300
+
301
+ # this section must be modified during inference, otherwise no speedup
302
+ outputs = (hidden_states,)
303
+
304
+ if output_attentions:
305
+ outputs += (self_attn_weights,)
306
+
307
+ if use_cache:
308
+ outputs += (present_key_value,)
309
+
310
+ if self.dynamic_skip:
311
+ outputs += (torch.concat([route, mlp_router_logits], dim=-1), )
312
+
313
+ return outputs
314
+
315
+ def load_balancing_loss_func(
316
+ gate_logits: torch.Tensor, num_experts: torch.Tensor = 40, capacity_load=0.125, attention_mask: Optional[torch.Tensor] = None
317
+ ) -> float:
318
+ r"""
319
+ Computes auxiliary load balancing loss as in Layer wise mode - implemented in Pytorch.
320
+
321
+ The original paper of mixture of depth didn't specify beyond one word : use aux loss
322
+
323
+ I would assume its from this:
324
+
325
+ Modified from Switch Transformer (https://arxiv.org/abs/2101.03961), I mean mixtral model.
326
+ This function implements the loss function presented in equations (4) - (6) of the paper.
327
+ It aims at penalizing cases where the routing between experts is too unbalanced.
328
+
329
+ Args:
330
+ gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
331
+ Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
332
+ shape [batch_size X sequence_length, num_experts].
333
+ attention_mask (`torch.Tensor`, None):
334
+ The attention_mask used in forward function
335
+ shape [batch_size X sequence_length] if not None.
336
+ num_experts (`int`):
337
+ Number of layers
338
+ top_k (`int`):
339
+ Number of experts (capacility load * num_experts)
340
+
341
+ Returns:
342
+ The auxiliary loss.
343
+ """
344
+ if gate_logits is None or not isinstance(gate_logits, tuple):
345
+ return 0
346
+
347
+ if isinstance(gate_logits, tuple):
348
+ compute_device = gate_logits[0].device
349
+ concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=-1)
350
+ batch_size, sequence_length, num_hidden_layers = concatenated_gate_logits.shape
351
+ top_k = int(capacity_load*sequence_length)
352
+
353
+ # bs x seq_length x layers
354
+ routing_weights = torch.nn.functional.sigmoid(concatenated_gate_logits)
355
+ # bs x layers x seq_length
356
+ routing_weights = routing_weights.permute(0, 2, 1)
357
+ _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
358
+ expert_mask = torch.nn.functional.one_hot(selected_experts, sequence_length)
359
+ expert_mask = expert_mask.reshape(-1, top_k, sequence_length)
360
+ # bs x num_layers x top_k x sequence length
361
+ if attention_mask is None:
362
+ # Compute the percentage of tokens routed to each experts
363
+ tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
364
+
365
+ # Compute the average probability of routing to these experts
366
+ router_prob_per_expert = torch.mean(routing_weights, dim=0)
367
+ else:
368
+ # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
369
+ expert_attention_mask = (
370
+ attention_mask[:, :, None, None]
371
+ .expand((batch_size, sequence_length, top_k, num_experts))
372
+ .permute(0, 3, 2, 1)
373
+ .reshape(-1, top_k, sequence_length)
374
+ .to(compute_device)
375
+ )
376
+
377
+ # Compute the percentage of tokens routed to each position id
378
+ tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
379
+ expert_attention_mask, dim=0
380
+ )
381
+ # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
382
+ router_per_expert_attention_mask = (
383
+ attention_mask[:, :, None]
384
+ .expand((batch_size, sequence_length, num_experts))
385
+ .reshape(-1, sequence_length)
386
+ .to(compute_device)
387
+ )
388
+ # Compute the average probability of routing to these experts
389
+ router_prob_per_expert = torch.sum(routing_weights.reshape(-1, sequence_length) * router_per_expert_attention_mask, dim=0) / torch.sum(
390
+ router_per_expert_attention_mask, dim=0
391
+ )
392
+ overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
393
+ return overall_loss
394
+
395
+
396
+
397
+ class LlamaMoDBalanceAux(nn.Module):
398
+ # implement the prediction inside this instead to make sure weights are transferable
399
+ # Implement method 1
400
+
401
+ def __init__(self, config: LlamaMoDConfig, layer_idx: int):
402
+ super().__init__()
403
+ self.hidden_size = config.hidden_size
404
+ self.layer_idx = layer_idx
405
+ self.capacity_factor = config.capacity_load
406
+ self.dynamic_skip = config.setup_layer_mod[layer_idx]
407
+ if self.dynamic_skip:
408
+ self.mod_router = nn.Linear(self.hidden_size, 1, bias=True)
409
+
410
+ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
411
+
412
+ self.mlp = LlamaMLP(config)
413
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
414
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
415
+
416
+ def forward(
417
+ self,
418
+ hidden_states: torch.Tensor,
419
+ attention_mask: Optional[torch.Tensor] = None,
420
+ position_ids: Optional[torch.LongTensor] = None,
421
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
422
+ output_attentions: Optional[bool] = False,
423
+ use_cache: Optional[bool] = False,
424
+ cache_position: Optional[torch.LongTensor] = None,
425
+ **kwargs,
426
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
427
+ """
428
+ Args:
429
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
430
+ attention_mask (`torch.FloatTensor`, *optional*):
431
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
432
+ query_sequence_length, key_sequence_length)` if default attention is used.
433
+ output_attentions (`bool`, *optional*):
434
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
435
+ returned tensors for more detail.
436
+ use_cache (`bool`, *optional*):
437
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
438
+ (see `past_key_values`).
439
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
440
+ """
441
+ if "padding_mask" in kwargs:
442
+ warnings.warn(
443
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
444
+ )
445
+
446
+ initial_residual = hidden_states
447
+ if self.dynamic_skip:
448
+ residual = hidden_states
449
+ seq_len = hidden_states.shape[1]
450
+ route = torch.sigmoid(self.mod_router(hidden_states))
451
+
452
+ if not self.training and (hidden_states.shape[1] == 1 and hidden_states.shape[0] == 1):
453
+ # TODO: fix this broke when batch is > 1
454
+ # single inference mode
455
+ if route[-1] > 0.5:
456
+ hidden_states = self.input_layernorm(hidden_states)
457
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
458
+ hidden_states=hidden_states,
459
+ attention_mask=attention_mask,
460
+ position_ids=position_ids,
461
+ past_key_value=past_key_value,
462
+ output_attentions=output_attentions,
463
+ use_cache=use_cache,
464
+ **kwargs,
465
+ )
466
+ hidden_states = residual + hidden_states
467
+ # Fully Connected
468
+ residual = hidden_states
469
+ hidden_states = self.post_attention_layernorm(hidden_states)
470
+ hidden_states = self.mlp(hidden_states)
471
+ hidden_states = residual + hidden_states
472
+ else:
473
+ hidden_states = initial_residual
474
+ self_attn_weights = None
475
+ present_key_value = None
476
+
477
+ else:
478
+ acc_route_choice = torch.cumsum(route > 0.5, dim=1)
479
+ min_top_k = max(int(self.capacity_factor*seq_len), 2)
480
+ top_k = max(torch.max(acc_route_choice), min_top_k)
481
+ # with open('experiments_bias_0.1_aux_0.001.jsonl', 'a') as fout:
482
+ # fout.write(json.dumps({'idx': self.layer_idx, 'top_k': int(top_k), 'seq_len': seq_len})+'\n')
483
+ weights, selected_tokens = torch.topk(route, top_k, dim=1, sorted=False)
484
+ # reorder back to original position?
485
+ selected_tokens, index = torch.sort(selected_tokens, dim=1)
486
+ if not self.training:
487
+ print(int(top_k), seq_len, self.layer_idx)
488
+ print(selected_tokens.flatten())
489
+
490
+ weights = torch.gather(weights, dim=1, index=index)
491
+ indices_expanded = selected_tokens.expand(-1, -1, self.hidden_size)
492
+ sub_hidden_states = torch.gather(hidden_states, 1, indices_expanded)
493
+ sub_position_ids = position_ids[: , :top_k]
494
+ if len(attention_mask.shape) == 4:
495
+ sub_attention_mask = attention_mask[:, :, :top_k,:top_k]
496
+ else:
497
+ sub_attention_mask = attention_mask[:, :top_k]
498
+
499
+
500
+ residual = sub_hidden_states
501
+ sub_hidden_states = self.input_layernorm(sub_hidden_states)
502
+ sub_hidden_states, attn_weights, present_key_value = self.self_attn(
503
+ hidden_states=sub_hidden_states,
504
+ attention_mask=sub_attention_mask,
505
+ position_ids=sub_position_ids,
506
+ past_key_value=past_key_value,
507
+ output_attentions=output_attentions,
508
+ use_cache=use_cache,
509
+ **kwargs,
510
+ )
511
+
512
+ sub_hidden_states = residual + sub_hidden_states
513
+ sub_residual = sub_hidden_states
514
+ # MLP
515
+ sub_hidden_states = self.post_attention_layernorm(sub_hidden_states)
516
+ sub_hidden_states = self.mlp(sub_hidden_states)
517
+ sub_hidden_states = sub_residual + sub_hidden_states
518
+ hidden_states = sub_hidden_states
519
+ hidden_states = torch.scatter(
520
+ initial_residual,
521
+ dim=1,
522
+ index=indices_expanded,
523
+ src=sub_hidden_states,
524
+ )
525
+ else:
526
+ residual = initial_residual
527
+ hidden_states = self.input_layernorm(hidden_states)
528
+
529
+ # Self Attention
530
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
531
+ hidden_states=hidden_states,
532
+ attention_mask=attention_mask,
533
+ position_ids=position_ids,
534
+ past_key_value=past_key_value,
535
+ output_attentions=output_attentions,
536
+ use_cache=use_cache,
537
+ **kwargs,
538
+ )
539
+ hidden_states = residual + hidden_states
540
+
541
+ # Fully Connected
542
+ residual = hidden_states
543
+ hidden_states = self.post_attention_layernorm(hidden_states)
544
+ hidden_states = self.mlp(hidden_states)
545
+ hidden_states = residual + hidden_states
546
+
547
+ # this section must be modified during inference, otherwise no speedup
548
+ outputs = (hidden_states,)
549
+
550
+ if output_attentions:
551
+ outputs += (self_attn_weights,)
552
+
553
+ if use_cache:
554
+ outputs += (present_key_value,)
555
+
556
+ if self.dynamic_skip:
557
+ outputs += (route, )
558
+
559
+ return outputs
560
+
561
+
562
+ class LlamaPreTrainedModel(PreTrainedModel):
563
+ config_class = LlamaMoDConfig
564
+ base_model_prefix = "model"
565
+ supports_gradient_checkpointing = True
566
+ _no_split_modules = ["LlamaDecoderLayer"]
567
+ _skip_keys_device_placement = ["past_key_values"]
568
+ _supports_flash_attn_2 = True
569
+ _supports_sdpa = True
570
+ _supports_cache_class = True
571
+
572
+ def _init_weights(self, module):
573
+ std = self.config.initializer_range
574
+ if isinstance(module, nn.Linear):
575
+ module.weight.data.normal_(mean=0.0, std=std)
576
+ if module.bias is not None:
577
+ module.bias.data.zero_()
578
+ elif isinstance(module, nn.Embedding):
579
+ module.weight.data.normal_(mean=0.0, std=std)
580
+ if module.padding_idx is not None:
581
+ module.weight.data[module.padding_idx].zero_()
582
+
583
+ def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None):
584
+ if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
585
+ raise ValueError(
586
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
587
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
588
+ )
589
+
590
+ for layer in self.model.layers:
591
+ device = layer.input_layernorm.weight.device
592
+ if hasattr(self.config, "_pre_quantization_dtype"):
593
+ dtype = self.config._pre_quantization_dtype
594
+ else:
595
+ dtype = layer.self_attn.o_proj.weight.dtype
596
+ layer.self_attn.past_key_value = cache_cls(
597
+ self.config, max_batch_size, max_cache_len, device=device, dtype=dtype
598
+ )
599
+
600
+ def _reset_cache(self):
601
+ for layer in self.model.layers:
602
+ layer.self_attn.past_key_value = None
603
+
604
+
605
+ LLAMA_DECODER_LAYER = {
606
+ 'none': LlamaDecoderLayer,
607
+ 'mod_1aux': LlamaMoDBalanceAux,
608
+ 'mod_dual': LlamaMoDDuaRouter
609
+ }
610
+
611
+ AUX_LOSS = {
612
+ 'mod_1aux': load_balancing_loss_func,
613
+ 'mod_dual': dual_router_aux_loss
614
+ }
615
+
616
+ class LlamaMoDModel(LlamaPreTrainedModel):
617
+ """
618
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
619
+
620
+ Args:
621
+ config: LlamaMoDConfig
622
+ """
623
+
624
+ def __init__(self, config: LlamaMoDConfig):
625
+ super().__init__(config)
626
+ self.padding_idx = config.pad_token_id
627
+ self.vocab_size = config.vocab_size
628
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
629
+ self.has_router = config.mod_method != 'none'
630
+ self.layers = nn.ModuleList(
631
+ [LLAMA_DECODER_LAYER[config.mod_method](config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
632
+ )
633
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
634
+ self.gradient_checkpointing = False
635
+
636
+ # Initialize weights and apply final processing
637
+ self.post_init()
638
+
639
+ def get_input_embeddings(self):
640
+ return self.embed_tokens
641
+
642
+ def set_input_embeddings(self, value):
643
+ self.embed_tokens = value
644
+
645
+ def forward(
646
+ self,
647
+ input_ids: torch.LongTensor = None,
648
+ attention_mask: Optional[torch.Tensor] = None,
649
+ position_ids: Optional[torch.LongTensor] = None,
650
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
651
+ inputs_embeds: Optional[torch.FloatTensor] = None,
652
+ use_cache: Optional[bool] = None,
653
+ output_attentions: Optional[bool] = None,
654
+ output_hidden_states: Optional[bool] = None,
655
+ return_dict: Optional[bool] = None,
656
+ cache_position: Optional[torch.LongTensor] = None,
657
+ output_router_logits: Optional[bool] = None,
658
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
659
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
660
+ output_hidden_states = (
661
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
662
+ )
663
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
664
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
665
+
666
+ if (input_ids is None) ^ (inputs_embeds is not None):
667
+ raise ValueError(
668
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
669
+ )
670
+
671
+ if self.gradient_checkpointing and self.training and use_cache:
672
+ logger.warning_once(
673
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
674
+ )
675
+ use_cache = False
676
+
677
+ if inputs_embeds is None:
678
+ inputs_embeds = self.embed_tokens(input_ids)
679
+
680
+ past_seen_tokens = 0
681
+ if use_cache: # kept for BC (cache positions)
682
+ if not isinstance(past_key_values, StaticCache):
683
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
684
+ past_seen_tokens = past_key_values.get_seq_length()
685
+
686
+ if cache_position is None:
687
+ if isinstance(past_key_values, StaticCache):
688
+ raise ValueError("cache_position is a required argument when using StaticCache.")
689
+ cache_position = torch.arange(
690
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
691
+ )
692
+
693
+ if position_ids is None:
694
+ position_ids = cache_position.unsqueeze(0)
695
+
696
+ causal_mask = self._update_causal_mask(
697
+ attention_mask, inputs_embeds, cache_position, past_seen_tokens + inputs_embeds.shape[1]
698
+ )
699
+
700
+ # embed positions
701
+ hidden_states = inputs_embeds
702
+
703
+ # decoder layers
704
+ all_hidden_states = () if output_hidden_states else None
705
+ all_self_attns = () if output_attentions else None
706
+ all_router_logits = () if output_router_logits else None
707
+ next_decoder_cache = None
708
+
709
+ for decoder_layer in self.layers:
710
+ if output_hidden_states:
711
+ all_hidden_states += (hidden_states,)
712
+
713
+ if self.gradient_checkpointing and self.training:
714
+ layer_outputs = self._gradient_checkpointing_func(
715
+ decoder_layer.__call__,
716
+ hidden_states,
717
+ causal_mask,
718
+ position_ids,
719
+ past_key_values,
720
+ output_attentions,
721
+ use_cache,
722
+ cache_position,
723
+ )
724
+ else:
725
+ layer_outputs = decoder_layer(
726
+ hidden_states,
727
+ attention_mask=causal_mask,
728
+ position_ids=position_ids,
729
+ past_key_value=past_key_values,
730
+ output_attentions=output_attentions,
731
+ use_cache=use_cache,
732
+ cache_position=cache_position,
733
+ )
734
+
735
+ hidden_states = layer_outputs[0]
736
+
737
+ if use_cache:
738
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
739
+
740
+ if output_attentions:
741
+ all_self_attns += (layer_outputs[1],)
742
+ if self.has_router and decoder_layer.dynamic_skip and output_router_logits:
743
+ all_router_logits += (layer_outputs[-1],)
744
+
745
+ hidden_states = self.norm(hidden_states)
746
+
747
+ # add hidden states from the last decoder layer
748
+ if output_hidden_states:
749
+ all_hidden_states += (hidden_states,)
750
+
751
+ next_cache = None
752
+ if use_cache:
753
+ next_cache = (
754
+ next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
755
+ )
756
+ if not return_dict:
757
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
758
+ return MoeModelOutputWithPast(
759
+ last_hidden_state=hidden_states,
760
+ past_key_values=next_cache,
761
+ hidden_states=all_hidden_states,
762
+ attentions=all_self_attns,
763
+ router_logits=all_router_logits
764
+ )
765
+
766
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
767
+ # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
768
+ # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
769
+ # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
770
+ def _update_causal_mask(self, attention_mask, input_tensor, cache_position, current_length):
771
+ if self.config._attn_implementation == "flash_attention_2":
772
+ if attention_mask is not None and 0.0 in attention_mask:
773
+ return attention_mask
774
+ return None
775
+
776
+ dtype, device = input_tensor.dtype, input_tensor.device
777
+ min_dtype = torch.finfo(dtype).min
778
+ sequence_length = input_tensor.shape[1]
779
+ if hasattr(getattr(self.layers[0], "self_attn", {}), "past_key_value"): # static cache
780
+ target_length = self.config.max_position_embeddings
781
+ else: # dynamic cache
782
+ target_length = (
783
+ attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else current_length + 1
784
+ )
785
+
786
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
787
+ if sequence_length != 1:
788
+ causal_mask = torch.triu(causal_mask, diagonal=1)
789
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
790
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
791
+ if attention_mask is not None:
792
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
793
+ if attention_mask.dim() == 2:
794
+ mask_length = attention_mask.shape[-1]
795
+ padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
796
+ causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
797
+ elif attention_mask.dim() == 4:
798
+ # backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
799
+ # cache. In that case, the 4D attention mask attends to the newest tokens only.
800
+ if attention_mask.shape[-2] < cache_position[0] + sequence_length:
801
+ offset = cache_position[0]
802
+ else:
803
+ offset = 0
804
+ mask_shape = attention_mask.shape
805
+ mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
806
+ causal_mask[
807
+ : mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3]
808
+ ] = mask_slice
809
+
810
+ if (
811
+ self.config._attn_implementation == "sdpa"
812
+ and attention_mask is not None
813
+ and attention_mask.device.type == "cuda"
814
+ ):
815
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
816
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
817
+ # Details: https://github.com/pytorch/pytorch/issues/110213
818
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
819
+
820
+ return causal_mask
821
+
822
+
823
+ class LlamaMoDForCausalLM(LlamaPreTrainedModel):
824
+ _tied_weights_keys = ["lm_head.weight"]
825
+
826
+ def __init__(self, config):
827
+ super().__init__(config)
828
+ self.model = LlamaMoDModel(config)
829
+ self.vocab_size = config.vocab_size
830
+ self.route_method = config.mod_method
831
+ self.router_aux_loss_coef = config.router_aux_loss_coef
832
+ if config.mod_method != 'none':
833
+ self.num_experts = sum(config.setup_layer_mod)
834
+ self.capacity_load = config.capacity_load
835
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
836
+
837
+ # Initialize weights and apply final processing
838
+ self.post_init()
839
+
840
+ def get_input_embeddings(self):
841
+ return self.model.embed_tokens
842
+
843
+ def set_input_embeddings(self, value):
844
+ self.model.embed_tokens = value
845
+
846
+ def get_output_embeddings(self):
847
+ return self.lm_head
848
+
849
+ def set_output_embeddings(self, new_embeddings):
850
+ self.lm_head = new_embeddings
851
+
852
+ def set_decoder(self, decoder):
853
+ self.model = decoder
854
+
855
+ def get_decoder(self):
856
+ return self.model
857
+
858
+ def forward(
859
+ self,
860
+ input_ids: torch.LongTensor = None,
861
+ attention_mask: Optional[torch.Tensor] = None,
862
+ position_ids: Optional[torch.LongTensor] = None,
863
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
864
+ inputs_embeds: Optional[torch.FloatTensor] = None,
865
+ labels: Optional[torch.LongTensor] = None,
866
+ use_cache: Optional[bool] = None,
867
+ output_attentions: Optional[bool] = None,
868
+ output_hidden_states: Optional[bool] = None,
869
+ return_dict: Optional[bool] = None,
870
+ cache_position: Optional[torch.LongTensor] = None,
871
+ output_router_logits: Optional[bool] = None,
872
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
873
+ r"""
874
+ Args:
875
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
876
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
877
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
878
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
879
+
880
+ Returns:
881
+
882
+ Example:
883
+
884
+ ```python
885
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
886
+
887
+ >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
888
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
889
+
890
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
891
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
892
+
893
+ >>> # Generate
894
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
895
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
896
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
897
+ ```"""
898
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
899
+ output_hidden_states = (
900
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
901
+ )
902
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
903
+
904
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
905
+ outputs = self.model(
906
+ input_ids=input_ids,
907
+ attention_mask=attention_mask,
908
+ position_ids=position_ids,
909
+ past_key_values=past_key_values,
910
+ inputs_embeds=inputs_embeds,
911
+ use_cache=use_cache,
912
+ output_attentions=output_attentions,
913
+ output_hidden_states=output_hidden_states,
914
+ return_dict=return_dict,
915
+ cache_position=cache_position,
916
+ output_router_logits=output_router_logits
917
+ )
918
+
919
+ hidden_states = outputs[0]
920
+ if self.config.pretraining_tp > 1:
921
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
922
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
923
+ logits = torch.cat(logits, dim=-1)
924
+ else:
925
+ logits = self.lm_head(hidden_states)
926
+ logits = logits.float()
927
+
928
+ loss = None
929
+ if labels is not None:
930
+ # Shift so that tokens < n predict n
931
+ shift_logits = logits[..., :-1, :].contiguous()
932
+ shift_labels = labels[..., 1:].contiguous()
933
+ # Flatten the tokens
934
+ loss_fct = CrossEntropyLoss()
935
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
936
+ shift_labels = shift_labels.view(-1)
937
+ # Enable model parallelism
938
+ shift_labels = shift_labels.to(shift_logits.device)
939
+ loss = loss_fct(shift_logits, shift_labels)
940
+
941
+ if output_router_logits:
942
+ aux_loss = AUX_LOSS[self.route_method](
943
+ outputs.router_logits if return_dict else outputs[-1],
944
+ self.num_experts,
945
+ self.capacity_load,
946
+ attention_mask,
947
+ )
948
+ if labels is not None:
949
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device)
950
+
951
+
952
+ if not return_dict:
953
+ output = (logits,) + outputs[1:]
954
+ return (loss,) + output if loss is not None else output
955
+
956
+ return MoeCausalLMOutputWithPast(
957
+ loss=loss,
958
+ logits=logits,
959
+ past_key_values=outputs.past_key_values,
960
+ hidden_states=outputs.hidden_states,
961
+ attentions=outputs.attentions,
962
+ )
963
+
964
+ def prepare_inputs_for_generation(
965
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
966
+ ):
967
+ # With static cache, the `past_key_values` is None
968
+ # TODO joao: standardize interface for the different Cache classes and remove of this if
969
+ has_static_cache = False
970
+ if past_key_values is None:
971
+ past_key_values = getattr(getattr(self.model.layers[0], "self_attn", {}), "past_key_value", None)
972
+ has_static_cache = past_key_values is not None
973
+
974
+ past_length = 0
975
+ if past_key_values is not None:
976
+ if isinstance(past_key_values, Cache):
977
+ past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
978
+ max_cache_length = (
979
+ torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
980
+ if past_key_values.get_max_length() is not None
981
+ else None
982
+ )
983
+ cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
984
+ # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
985
+ else:
986
+ cache_length = past_length = past_key_values[0][0].shape[2]
987
+ max_cache_length = None
988
+
989
+ # Keep only the unprocessed tokens:
990
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
991
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
992
+ # input)
993
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
994
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
995
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
996
+ # input_ids based on the past_length.
997
+ elif past_length < input_ids.shape[1]:
998
+ input_ids = input_ids[:, past_length:]
999
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1000
+
1001
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1002
+ if (
1003
+ max_cache_length is not None
1004
+ and attention_mask is not None
1005
+ and cache_length + input_ids.shape[1] > max_cache_length
1006
+ ):
1007
+ attention_mask = attention_mask[:, -max_cache_length:]
1008
+
1009
+ position_ids = kwargs.get("position_ids", None)
1010
+ if attention_mask is not None and position_ids is None:
1011
+ # create position_ids on the fly for batch generation
1012
+ position_ids = attention_mask.long().cumsum(-1) - 1
1013
+ position_ids.masked_fill_(attention_mask == 0, 1)
1014
+ if past_key_values:
1015
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1016
+
1017
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1018
+ if inputs_embeds is not None and past_key_values is None:
1019
+ model_inputs = {"inputs_embeds": inputs_embeds}
1020
+ else:
1021
+ # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
1022
+ # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
1023
+ # TODO: use `next_tokens` directly instead.
1024
+ model_inputs = {"input_ids": input_ids.contiguous()}
1025
+
1026
+ input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
1027
+ if cache_position is None:
1028
+ cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
1029
+ else:
1030
+ cache_position = cache_position[-input_length:]
1031
+
1032
+ if has_static_cache:
1033
+ past_key_values = None
1034
+
1035
+ model_inputs.update(
1036
+ {
1037
+ "position_ids": position_ids,
1038
+ "cache_position": cache_position,
1039
+ "past_key_values": past_key_values,
1040
+ "use_cache": kwargs.get("use_cache"),
1041
+ "attention_mask": attention_mask,
1042
+ }
1043
+ )
1044
+ return model_inputs
1045
+
1046
+ @staticmethod
1047
+ def _reorder_cache(past_key_values, beam_idx):
1048
+ reordered_past = ()
1049
+ for layer_past in past_key_values:
1050
+ reordered_past += (
1051
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1052
+ )
1053
+ return reordered_past
1054
+
1055
+
1056
+
1057
+ class LlamaForSequenceClassification(LlamaPreTrainedModel):
1058
+ def __init__(self, config):
1059
+ super().__init__(config)
1060
+ self.num_labels = config.num_labels
1061
+ self.model = LlamaModel(config)
1062
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1063
+
1064
+ # Initialize weights and apply final processing
1065
+ self.post_init()
1066
+
1067
+ def get_input_embeddings(self):
1068
+ return self.model.embed_tokens
1069
+
1070
+ def set_input_embeddings(self, value):
1071
+ self.model.embed_tokens = value
1072
+
1073
+ def forward(
1074
+ self,
1075
+ input_ids: torch.LongTensor = None,
1076
+ attention_mask: Optional[torch.Tensor] = None,
1077
+ position_ids: Optional[torch.LongTensor] = None,
1078
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1079
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1080
+ labels: Optional[torch.LongTensor] = None,
1081
+ use_cache: Optional[bool] = None,
1082
+ output_attentions: Optional[bool] = None,
1083
+ output_hidden_states: Optional[bool] = None,
1084
+ return_dict: Optional[bool] = None,
1085
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1086
+ r"""
1087
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1088
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1089
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1090
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1091
+ """
1092
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1093
+
1094
+ transformer_outputs = self.model(
1095
+ input_ids,
1096
+ attention_mask=attention_mask,
1097
+ position_ids=position_ids,
1098
+ past_key_values=past_key_values,
1099
+ inputs_embeds=inputs_embeds,
1100
+ use_cache=use_cache,
1101
+ output_attentions=output_attentions,
1102
+ output_hidden_states=output_hidden_states,
1103
+ return_dict=return_dict,
1104
+ )
1105
+ hidden_states = transformer_outputs[0]
1106
+ logits = self.score(hidden_states)
1107
+
1108
+ if input_ids is not None:
1109
+ batch_size = input_ids.shape[0]
1110
+ else:
1111
+ batch_size = inputs_embeds.shape[0]
1112
+
1113
+ if self.config.pad_token_id is None and batch_size != 1:
1114
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1115
+ if self.config.pad_token_id is None:
1116
+ sequence_lengths = -1
1117
+ else:
1118
+ if input_ids is not None:
1119
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1120
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1121
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1122
+ sequence_lengths = sequence_lengths.to(logits.device)
1123
+ else:
1124
+ sequence_lengths = -1
1125
+
1126
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1127
+
1128
+ loss = None
1129
+ if labels is not None:
1130
+ labels = labels.to(logits.device)
1131
+ if self.config.problem_type is None:
1132
+ if self.num_labels == 1:
1133
+ self.config.problem_type = "regression"
1134
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1135
+ self.config.problem_type = "single_label_classification"
1136
+ else:
1137
+ self.config.problem_type = "multi_label_classification"
1138
+
1139
+ if self.config.problem_type == "regression":
1140
+ loss_fct = MSELoss()
1141
+ if self.num_labels == 1:
1142
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1143
+ else:
1144
+ loss = loss_fct(pooled_logits, labels)
1145
+ elif self.config.problem_type == "single_label_classification":
1146
+ loss_fct = CrossEntropyLoss()
1147
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1148
+ elif self.config.problem_type == "multi_label_classification":
1149
+ loss_fct = BCEWithLogitsLoss()
1150
+ loss = loss_fct(pooled_logits, labels)
1151
+ if not return_dict:
1152
+ output = (pooled_logits,) + transformer_outputs[1:]
1153
+ return ((loss,) + output) if loss is not None else output
1154
+
1155
+ return SequenceClassifierOutputWithPast(
1156
+ loss=loss,
1157
+ logits=pooled_logits,
1158
+ past_key_values=transformer_outputs.past_key_values,
1159
+ hidden_states=transformer_outputs.hidden_states,
1160
+ attentions=transformer_outputs.attentions,
1161
+ )
1162
+
1163
+
1164
+ class LlamaForQuestionAnswering(LlamaPreTrainedModel):
1165
+ base_model_prefix = "transformer"
1166
+
1167
+ # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Llama
1168
+ def __init__(self, config):
1169
+ super().__init__(config)
1170
+ self.transformer = LlamaModel(config)
1171
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1172
+
1173
+ # Initialize weights and apply final processing
1174
+ self.post_init()
1175
+
1176
+ def get_input_embeddings(self):
1177
+ return self.transformer.embed_tokens
1178
+
1179
+ def set_input_embeddings(self, value):
1180
+ self.transformer.embed_tokens = value
1181
+
1182
+ def forward(
1183
+ self,
1184
+ input_ids: Optional[torch.LongTensor] = None,
1185
+ attention_mask: Optional[torch.FloatTensor] = None,
1186
+ position_ids: Optional[torch.LongTensor] = None,
1187
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1188
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1189
+ start_positions: Optional[torch.LongTensor] = None,
1190
+ end_positions: Optional[torch.LongTensor] = None,
1191
+ output_attentions: Optional[bool] = None,
1192
+ output_hidden_states: Optional[bool] = None,
1193
+ return_dict: Optional[bool] = None,
1194
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1195
+ r"""
1196
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1197
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1198
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1199
+ are not taken into account for computing the loss.
1200
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1201
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1202
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1203
+ are not taken into account for computing the loss.
1204
+ """
1205
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1206
+
1207
+ outputs = self.transformer(
1208
+ input_ids,
1209
+ attention_mask=attention_mask,
1210
+ position_ids=position_ids,
1211
+ past_key_values=past_key_values,
1212
+ inputs_embeds=inputs_embeds,
1213
+ output_attentions=output_attentions,
1214
+ output_hidden_states=output_hidden_states,
1215
+ return_dict=return_dict,
1216
+ )
1217
+
1218
+ sequence_output = outputs[0]
1219
+
1220
+ logits = self.qa_outputs(sequence_output)
1221
+ start_logits, end_logits = logits.split(1, dim=-1)
1222
+ start_logits = start_logits.squeeze(-1).contiguous()
1223
+ end_logits = end_logits.squeeze(-1).contiguous()
1224
+
1225
+ total_loss = None
1226
+ if start_positions is not None and end_positions is not None:
1227
+ # If we are on multi-GPU, split add a dimension
1228
+ if len(start_positions.size()) > 1:
1229
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1230
+ if len(end_positions.size()) > 1:
1231
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1232
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1233
+ ignored_index = start_logits.size(1)
1234
+ start_positions = start_positions.clamp(0, ignored_index)
1235
+ end_positions = end_positions.clamp(0, ignored_index)
1236
+
1237
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1238
+ start_loss = loss_fct(start_logits, start_positions)
1239
+ end_loss = loss_fct(end_logits, end_positions)
1240
+ total_loss = (start_loss + end_loss) / 2
1241
+
1242
+ if not return_dict:
1243
+ output = (start_logits, end_logits) + outputs[2:]
1244
+ return ((total_loss,) + output) if total_loss is not None else output
1245
+
1246
+ return QuestionAnsweringModelOutput(
1247
+ loss=total_loss,
1248
+ start_logits=start_logits,
1249
+ end_logits=end_logits,
1250
+ hidden_states=outputs.hidden_states,
1251
+ attentions=outputs.attentions,
1252
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "bos_token": "<s>",
31
+ "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": false,
35
+ "model_max_length": 2048,
36
+ "pad_token": "</s>",
37
+ "padding_side": "right",
38
+ "sp_model_kwargs": {},
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }