TFaugvit / augvit_model.py
tensorgirl's picture
Upload AugViTForImageClassification
f203678
raw
history blame
6.39 kB
import tensorflow as tf
from tensorflow.keras import Model
from tensorflow.keras.layers import Layer
from tensorflow.keras import Sequential
import tensorflow.keras.layers as nn
from tensorflow import einsum
from einops import rearrange, repeat
from einops.layers.tensorflow import Rearrange
import numpy as np
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def gelu(x):
cdf = 0.5 * (1.0 + tf.tanh(
(np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))))
return x * cdf
class PreNorm(Layer):
def __init__(self,fn,name):
super(PreNorm, self).__init__(name=name)
self.norm = nn.LayerNormalization(name=f'{name}/layernorm')
self.fn = fn
def call(self, x, training=True):
return self.fn(self.norm(x), training=training)
class MLP(Layer):
def __init__(self, dim, hidden_dim, name,dropout=0.0):
super(MLP, self).__init__(name=name)
self.net = Sequential([
nn.Dense(units=hidden_dim,activation=gelu,name=f'{name}/den1'),
nn.Dropout(rate=dropout,name=f'{name}/drop1'),
nn.Dense(units=dim,name=f'{name}/den2'),
nn.Dropout(rate=dropout,name=f'{name}/drop2')
],name=f'{name}/seq1')
def call(self, x, training=True):
return self.net(x, training=training)
class Attention(Layer):
def __init__(self, dim, name,heads=8, dim_head=64, dropout=0.0):
super(Attention, self).__init__(name=name)
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(name=f'{name}/soft')
self.to_qkv = nn.Dense(units=inner_dim * 3, use_bias=False,name=f'{name}/den1')
if project_out:
self.to_out = [
nn.Dense(units=dim,name=f'{name}/den2'),
nn.Dropout(rate=dropout,name=f'{name}/drop1')
]
else:
self.to_out = []
self.to_out = Sequential(self.to_out,name=f'{name}/seq')
def call(self, x, training=True):
qkv = self.to_qkv(x)
qkv = tf.split(qkv, num_or_size_splits=3, axis=-1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=self.heads), qkv)
# dots = tf.matmul(q, tf.transpose(k, perm=[0, 1, 3, 2])) * self.scale
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = self.attend(dots)
# x = tf.matmul(attn, v)
x = einsum('b h i j, b h j d -> b h i d', attn, v)
x = rearrange(x, 'b h n d -> b n (h d)')
x = self.to_out(x, training=training)
return x
class Transformer(Layer):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, name,dropout=0.0):
super(Transformer, self).__init__(True,name)
self.layers = []
for i in range(depth):
self.layers.append([
PreNorm(Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout,name=f'{name}/att{i}'),name=f'{name}preno{i}'),
PreNorm(nn.Dense(dim,activation=gelu,name=f'{name}/den{i}'),name=f'{name}preno1{i}'),
PreNorm(MLP(dim, mlp_dim, dropout=dropout,name=f'{name}/mlp{i}'),name=f'{name}preno2{i}'),
PreNorm(nn.Dense(dim,activation=gelu,name=f'{name}/den2{i}'),name=f'{name}preno3{i}'),
])
def call(self, x, training=True):
for attn,aug_attn, mlp, augs in self.layers:
x = attn(x, training=training) + x + aug_attn(x, training=training)
x = mlp(x, training=training) + x + augs(x, training=training)
return x
class AUGViT(Model):
def __init__(self, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim,name='augvit',
pool='cls', dim_head=64, dropout=0.0, emb_dropout=0.0):
super(AUGViT, self).__init__(name=name)
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.patch_embedding = Sequential([
Rearrange('b (h p1) (w p2) c -> b (h w) (p1 p2 c)', p1=patch_height, p2=patch_width),
nn.Dense(units=dim,name='patchden')
], name='patch_embedding')
self.pos_embedding = tf.Variable(initial_value=tf.random.normal([1, num_patches + 1, dim]),name='pos_emb')
self.cls_token = tf.Variable(initial_value=tf.random.normal([1, 1, dim]),name='cls')
self.dropout = nn.Dropout(rate=emb_dropout,name='drop')
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout=dropout,name='trans')
self.pool = pool
self.mlp_head = Sequential([
nn.LayerNormalization(name='layernorm'),
nn.Dense(units=num_classes,name='dense12')
], name='mlp_head')
def call(self, img, training=True, **kwargs):
x = self.patch_embedding(img)
b, n, d = x.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b=b)
x = tf.concat([cls_tokens, x], axis=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x, training=training)
x = self.transformer(x, training=training)
if self.pool == 'mean':
x = tf.reduce_mean(x, axis=1)
else:
x = x[:, 0]
x = self.mlp_head(x)
return x
from transformers import TFPreTrainedModel
from .augvit_config import AugViTConfig
class AugViTForImageClassification(TFPreTrainedModel):
config_class = AugViTConfig
def __init__(self, config):
super().__init__(config)
self.model = AUGViT(
image_size = config.image_size,
patch_size = config.patch_size,
num_classes = config.num_classes,
dim = config.dim,
depth = config.depth,
heads = config.heads,
mlp_dim = config.mlp_dim,
dropout = config.dropout,
emb_dropout =config.emb_dropout
)
def call(self, input,**kwargs):
logits = self.model(input)
return logits