File size: 7,944 Bytes
f203678 93c26b6 f203678 64dcf7f f203678 93c26b6 c3b4b22 f203678 93c26b6 f203678 c3d8293 1695b9a f203678 64dcf7f f203678 1695b9a c3b4b22 1695b9a 93c26b6 a85fc61 4e2f8db f203678 1695b9a f203678 fcf40f1 f203678 fcf40f1 65a341c ede0b4d f203678 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import tensorflow as tf
from tensorflow.keras import Model
from tensorflow.keras.layers import Layer
from tensorflow.keras import Sequential
import tensorflow.keras.layers as nn
from tensorflow import einsum
from einops import rearrange, repeat
from einops.layers.tensorflow import Rearrange
import numpy as np
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def gelu(x):
cdf = 0.5 * (1.0 + tf.tanh(
(np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))))
return x * cdf
class PreNorm(Layer):
def __init__(self,fn,name):
super(PreNorm, self).__init__(name=name)
self.norm = nn.LayerNormalization(name=f'{name}/layernorm')
self.fn = fn
def call(self, x, training=True):
return self.fn(self.norm(x), training=training)
class MLP(Layer):
def __init__(self, dim, hidden_dim, name,dropout=0.0):
super(MLP, self).__init__(name=name)
self.net = Sequential([
nn.Dense(units=hidden_dim,activation=gelu,name=f'{name}/den1'),
nn.Dropout(rate=dropout,name=f'{name}/drop1'),
nn.Dense(units=dim,name=f'{name}/den2'),
nn.Dropout(rate=dropout,name=f'{name}/drop2')
],name=f'{name}/seq1')
def call(self, x, training=True):
return self.net(x, training=training)
class Attention(Layer):
def __init__(self, dim, name,heads=8, dim_head=64, dropout=0.0):
super(Attention, self).__init__(name=name)
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(name=f'{name}/soft')
self.to_qkv = nn.Dense(units=inner_dim * 3, use_bias=False,name=f'{name}/den1')
if project_out:
self.to_out = [
nn.Dense(units=dim,name=f'{name}/den2'),
nn.Dropout(rate=dropout,name=f'{name}/drop1')
]
else:
self.to_out = []
self.to_out = Sequential(self.to_out,name=f'{name}/seq')
def call(self, x, training=True):
qkv = self.to_qkv(x)
qkv = tf.split(qkv, num_or_size_splits=3, axis=-1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=self.heads), qkv)
# dots = tf.matmul(q, tf.transpose(k, perm=[0, 1, 3, 2])) * self.scale
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = self.attend(dots)
# x = tf.matmul(attn, v)
x = einsum('b h i j, b h j d -> b h i d', attn, v)
x = rearrange(x, 'b h n d -> b n (h d)')
x = self.to_out(x, training=training)
return x
class Transformer(Layer):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, name,dropout=0.0):
super(Transformer, self).__init__(True,name)
self.layers = []
for i in range(depth):
self.layers.append([
PreNorm(Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout,name=f'{name}/att{i}'),name=f'{name}preno{i}'),
PreNorm(nn.Dense(dim,activation=gelu,name=f'{name}/den{i}'),name=f'{name}preno1{i}'),
PreNorm(MLP(dim, mlp_dim, dropout=dropout,name=f'{name}/mlp{i}'),name=f'{name}preno2{i}'),
PreNorm(nn.Dense(dim,activation=gelu,name=f'{name}/den2{i}'),name=f'{name}preno3{i}'),
])
def call(self, x, training=True):
for attn,aug_attn, mlp, augs in self.layers:
x = attn(x, training=training) + x + aug_attn(x, training=training)
x = mlp(x, training=training) + x + augs(x, training=training)
return x
@tf.keras.utils.register_keras_serializable()
class AddPositionEmbs(tf.keras.layers.Layer):
def build(self, input_shape):
assert (
len(input_shape) == 3
), f"Number of dimensions should be 3, got {len(input_shape)}"
self.pe = tf.Variable(
name="pos_embedding",
initial_value=tf.random_normal_initializer(stddev=0.06)(
shape=(1, input_shape[1], input_shape[2])
),
dtype="float32",
trainable=True,
)
def call(self, inputs):
return inputs + tf.cast(self.pe, dtype=inputs.dtype)
def get_config(self):
config = super().get_config()
return config
@classmethod
def from_config(cls, config):
return cls(**config)
class AUGViT(Model):
def __init__(self, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim,name='augvit',
pool='cls', dim_head=64, dropout=0.0, emb_dropout=0.0):
super(AUGViT, self).__init__(name=name)
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.patch_embedding = Rearrange('b (h p1) (w p2) c -> b (h w) (p1 p2 c)', p1=patch_height, p2=patch_width)
self.patch_den= nn.Dense(units=dim,name='patchden')
self.pos_embedding = AddPositionEmbs(name="Transformer/posembed_input")
self.cls_token = tf.Variable(initial_value=tf.random.normal([1, 1, dim]),name='cls',trainable=True)
self.dropout = nn.Dropout(rate=emb_dropout,name='drop')
# self.pos_embedding = tf.Variable(initial_value=tf.random_normal_initializer(stddev=0.06)(
# shape=(1, num_patches + 1, dim)),name='pos_emb',trainable=True)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout=dropout,name='trans')
self.pool = pool
self.mlp_head = Sequential([
nn.LayerNormalization(name='layernorm'),
nn.Dense(units=num_classes,name='dense12')
], name='mlp_head')
def call(self, img, training=True, **kwargs):
x = self.patch_embedding(img)
x = self.patch_den(x)
b, n, d = x.shape
# print(x.shape)
cls_tokens = tf.cast(
tf.broadcast_to(self.cls_token, [b, 1, d]),
dtype=x.dtype,
)
x = tf.concat([cls_tokens, x], axis=1)
# print(x.shape,cls_tokens.shape )
x= self.pos_embedding(x)
# print(x.shape,pos.shape,self.pos_embedding.shape)
x = self.dropout(x, training=training)
# print(x.shape)
x = self.transformer(x, training=training)
if self.pool == 'mean':
x = tf.reduce_mean(x, axis=1)
else:
x = x[:, 0]
x = self.mlp_head(x)
return x
from transformers import TFPreTrainedModel
from .augvit_config import AugViTConfig
from typing import Dict, Optional, Tuple, Union
class AugViTForImageClassification(TFPreTrainedModel):
config_class = AugViTConfig
def __init__(self, config):
super().__init__(config)
self.model = AUGViT(
image_size = config.image_size,
patch_size = config.patch_size,
num_classes = config.num_classes,
dim = config.dim,
depth = config.depth,
heads = config.heads,
mlp_dim = config.mlp_dim,
dropout = config.dropout,
emb_dropout =config.emb_dropout
)
def call(self, pixel_values: tf.Tensor | None = None,
output_hidden_states: Optional[bool] = None,
labels: tf.Tensor | None = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs):
inp = pixel_values['pixel_values']
if inp.shape[-1]!=3:
inp = tf.transpose(inp,[0,2,3,1])
logits = self.model(inp)
return logits |