morriszms commited on
Commit
3e8f2e8
·
verified ·
1 Parent(s): dbf2ef6

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,15 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ GritLM-8x7B-Q2_K.gguf filter=lfs diff=lfs merge=lfs -text
37
+ GritLM-8x7B-Q3_K_L.gguf filter=lfs diff=lfs merge=lfs -text
38
+ GritLM-8x7B-Q3_K_M.gguf filter=lfs diff=lfs merge=lfs -text
39
+ GritLM-8x7B-Q3_K_S.gguf filter=lfs diff=lfs merge=lfs -text
40
+ GritLM-8x7B-Q4_0.gguf filter=lfs diff=lfs merge=lfs -text
41
+ GritLM-8x7B-Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
42
+ GritLM-8x7B-Q4_K_S.gguf filter=lfs diff=lfs merge=lfs -text
43
+ GritLM-8x7B-Q5_0.gguf filter=lfs diff=lfs merge=lfs -text
44
+ GritLM-8x7B-Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
45
+ GritLM-8x7B-Q5_K_S.gguf filter=lfs diff=lfs merge=lfs -text
46
+ GritLM-8x7B-Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
47
+ GritLM-8x7B-Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
GritLM-8x7B-Q2_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:973d68c3f8d965cac9337e5b1f6f1c9d62d5205c694dee9f311722498e7763db
3
+ size 17311229952
GritLM-8x7B-Q3_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef86d6a3122b136289f7083e4140912b8ef64f96f77ecb3632022b56e4f3bd71
3
+ size 24169646080
GritLM-8x7B-Q3_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cf8f4c221fd31bf119368231dafbe6b7921d14d092d254587455153317e62d0
3
+ size 22546450432
GritLM-8x7B-Q3_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:894355a189bf52f8f0391dcefd284142b130288e09d08e450b54a83ab17989e6
3
+ size 20432521216
GritLM-8x7B-Q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3538997cda5f27aaab1439b62101170d6887fe956726ea9b772fec08833bacf6
3
+ size 26443589632
GritLM-8x7B-Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7c1ce53ed800f7b7df342ddfbe5a2b15f3018bdb9007503e139d3eb1d4134a4
3
+ size 28448466944
GritLM-8x7B-Q4_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e965e3157d5d89450695b08597a2f0d18b6c01293d3b89f4dfcbc0df15336924
3
+ size 26745579520
GritLM-8x7B-Q5_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4abd8bff8cb0387f7382971dcc44dd3f95b23216c9514408c4c5ff234c7f2f7e
3
+ size 32231335936
GritLM-8x7B-Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90877454e4fda61d3ec6c20621223f7fe72d3bdfcea4301ac0023b090456b4ce
3
+ size 33229580288
GritLM-8x7B-Q5_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acd7e43b578efdfb7ca1968e42c313cba308bcee867e970cc629f68e03412ab1
3
+ size 32231335936
GritLM-8x7B-Q6_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a02b9e98186beb274dc83fd57c251c2c853b5fca63ec72720ae0802d6b28fac3
3
+ size 38380816384
GritLM-8x7B-Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2383bf5b56a5ae8c54617b47f912d1220f700b53b221b773daac1614c47ebab
3
+ size 49626318848
README.md ADDED
@@ -0,0 +1,2570 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-generation
3
+ inference: true
4
+ license: apache-2.0
5
+ datasets:
6
+ - GritLM/tulu2
7
+ tags:
8
+ - mteb
9
+ - TensorBlock
10
+ - GGUF
11
+ base_model: GritLM/GritLM-8x7B
12
+ model-index:
13
+ - name: GritLM-8x7B
14
+ results:
15
+ - task:
16
+ type: Classification
17
+ dataset:
18
+ name: MTEB AmazonCounterfactualClassification (en)
19
+ type: mteb/amazon_counterfactual
20
+ config: en
21
+ split: test
22
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
23
+ metrics:
24
+ - type: accuracy
25
+ value: 80.47761194029852
26
+ - type: ap
27
+ value: 44.38751347932197
28
+ - type: f1
29
+ value: 74.33580162208256
30
+ - task:
31
+ type: Classification
32
+ dataset:
33
+ name: MTEB AmazonPolarityClassification
34
+ type: mteb/amazon_polarity
35
+ config: default
36
+ split: test
37
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
38
+ metrics:
39
+ - type: accuracy
40
+ value: 96.32155000000002
41
+ - type: ap
42
+ value: 94.8026654593679
43
+ - type: f1
44
+ value: 96.3209869463974
45
+ - task:
46
+ type: Classification
47
+ dataset:
48
+ name: MTEB AmazonReviewsClassification (en)
49
+ type: mteb/amazon_reviews_multi
50
+ config: en
51
+ split: test
52
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
53
+ metrics:
54
+ - type: accuracy
55
+ value: 57.18400000000001
56
+ - type: f1
57
+ value: 55.945160479400954
58
+ - task:
59
+ type: Retrieval
60
+ dataset:
61
+ name: MTEB ArguAna
62
+ type: arguana
63
+ config: default
64
+ split: test
65
+ revision: None
66
+ metrics:
67
+ - type: map_at_1
68
+ value: 34.353
69
+ - type: map_at_10
70
+ value: 50.773
71
+ - type: map_at_100
72
+ value: 51.515
73
+ - type: map_at_1000
74
+ value: 51.517
75
+ - type: map_at_3
76
+ value: 46.29
77
+ - type: map_at_5
78
+ value: 48.914
79
+ - type: mrr_at_1
80
+ value: 35.135
81
+ - type: mrr_at_10
82
+ value: 51.036
83
+ - type: mrr_at_100
84
+ value: 51.785000000000004
85
+ - type: mrr_at_1000
86
+ value: 51.787000000000006
87
+ - type: mrr_at_3
88
+ value: 46.562
89
+ - type: mrr_at_5
90
+ value: 49.183
91
+ - type: ndcg_at_1
92
+ value: 34.353
93
+ - type: ndcg_at_10
94
+ value: 59.492
95
+ - type: ndcg_at_100
96
+ value: 62.395999999999994
97
+ - type: ndcg_at_1000
98
+ value: 62.44499999999999
99
+ - type: ndcg_at_3
100
+ value: 50.217
101
+ - type: ndcg_at_5
102
+ value: 54.98499999999999
103
+ - type: precision_at_1
104
+ value: 34.353
105
+ - type: precision_at_10
106
+ value: 8.72
107
+ - type: precision_at_100
108
+ value: 0.993
109
+ - type: precision_at_1000
110
+ value: 0.1
111
+ - type: precision_at_3
112
+ value: 20.531
113
+ - type: precision_at_5
114
+ value: 14.651
115
+ - type: recall_at_1
116
+ value: 34.353
117
+ - type: recall_at_10
118
+ value: 87.198
119
+ - type: recall_at_100
120
+ value: 99.289
121
+ - type: recall_at_1000
122
+ value: 99.644
123
+ - type: recall_at_3
124
+ value: 61.592999999999996
125
+ - type: recall_at_5
126
+ value: 73.257
127
+ - task:
128
+ type: Clustering
129
+ dataset:
130
+ name: MTEB ArxivClusteringP2P
131
+ type: mteb/arxiv-clustering-p2p
132
+ config: default
133
+ split: test
134
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
135
+ metrics:
136
+ - type: v_measure
137
+ value: 50.720077577006286
138
+ - task:
139
+ type: Clustering
140
+ dataset:
141
+ name: MTEB ArxivClusteringS2S
142
+ type: mteb/arxiv-clustering-s2s
143
+ config: default
144
+ split: test
145
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
146
+ metrics:
147
+ - type: v_measure
148
+ value: 48.01021098734129
149
+ - task:
150
+ type: Reranking
151
+ dataset:
152
+ name: MTEB AskUbuntuDupQuestions
153
+ type: mteb/askubuntudupquestions-reranking
154
+ config: default
155
+ split: test
156
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
157
+ metrics:
158
+ - type: map
159
+ value: 65.59672236627206
160
+ - type: mrr
161
+ value: 78.01191575429802
162
+ - task:
163
+ type: STS
164
+ dataset:
165
+ name: MTEB BIOSSES
166
+ type: mteb/biosses-sts
167
+ config: default
168
+ split: test
169
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
170
+ metrics:
171
+ - type: cos_sim_pearson
172
+ value: 89.52452252271826
173
+ - type: cos_sim_spearman
174
+ value: 87.34415887061094
175
+ - type: euclidean_pearson
176
+ value: 87.46187616533932
177
+ - type: euclidean_spearman
178
+ value: 85.44712769366146
179
+ - type: manhattan_pearson
180
+ value: 87.56696679505373
181
+ - type: manhattan_spearman
182
+ value: 86.01581535039067
183
+ - task:
184
+ type: Classification
185
+ dataset:
186
+ name: MTEB Banking77Classification
187
+ type: mteb/banking77
188
+ config: default
189
+ split: test
190
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
191
+ metrics:
192
+ - type: accuracy
193
+ value: 87.4577922077922
194
+ - type: f1
195
+ value: 87.38432712848123
196
+ - task:
197
+ type: Clustering
198
+ dataset:
199
+ name: MTEB BiorxivClusteringP2P
200
+ type: mteb/biorxiv-clustering-p2p
201
+ config: default
202
+ split: test
203
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
204
+ metrics:
205
+ - type: v_measure
206
+ value: 41.41290357360428
207
+ - task:
208
+ type: Clustering
209
+ dataset:
210
+ name: MTEB BiorxivClusteringS2S
211
+ type: mteb/biorxiv-clustering-s2s
212
+ config: default
213
+ split: test
214
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
215
+ metrics:
216
+ - type: v_measure
217
+ value: 38.67213605633667
218
+ - task:
219
+ type: Retrieval
220
+ dataset:
221
+ name: MTEB CQADupstackAndroidRetrieval
222
+ type: BeIR/cqadupstack
223
+ config: default
224
+ split: test
225
+ revision: None
226
+ metrics:
227
+ - type: map_at_1
228
+ value: 37.545
229
+ - type: map_at_10
230
+ value: 50.015
231
+ - type: map_at_100
232
+ value: 51.763999999999996
233
+ - type: map_at_1000
234
+ value: 51.870000000000005
235
+ - type: map_at_3
236
+ value: 46.129999999999995
237
+ - type: map_at_5
238
+ value: 48.473
239
+ - type: mrr_at_1
240
+ value: 47.638999999999996
241
+ - type: mrr_at_10
242
+ value: 56.913000000000004
243
+ - type: mrr_at_100
244
+ value: 57.619
245
+ - type: mrr_at_1000
246
+ value: 57.648999999999994
247
+ - type: mrr_at_3
248
+ value: 54.435
249
+ - type: mrr_at_5
250
+ value: 56.059000000000005
251
+ - type: ndcg_at_1
252
+ value: 47.638999999999996
253
+ - type: ndcg_at_10
254
+ value: 56.664
255
+ - type: ndcg_at_100
256
+ value: 62.089000000000006
257
+ - type: ndcg_at_1000
258
+ value: 63.415
259
+ - type: ndcg_at_3
260
+ value: 51.842999999999996
261
+ - type: ndcg_at_5
262
+ value: 54.30199999999999
263
+ - type: precision_at_1
264
+ value: 47.638999999999996
265
+ - type: precision_at_10
266
+ value: 10.886999999999999
267
+ - type: precision_at_100
268
+ value: 1.722
269
+ - type: precision_at_1000
270
+ value: 0.212
271
+ - type: precision_at_3
272
+ value: 25.179000000000002
273
+ - type: precision_at_5
274
+ value: 18.226
275
+ - type: recall_at_1
276
+ value: 37.545
277
+ - type: recall_at_10
278
+ value: 68.118
279
+ - type: recall_at_100
280
+ value: 90.381
281
+ - type: recall_at_1000
282
+ value: 98.556
283
+ - type: recall_at_3
284
+ value: 53.319
285
+ - type: recall_at_5
286
+ value: 60.574
287
+ - type: map_at_1
288
+ value: 37.066
289
+ - type: map_at_10
290
+ value: 49.464000000000006
291
+ - type: map_at_100
292
+ value: 50.79900000000001
293
+ - type: map_at_1000
294
+ value: 50.928
295
+ - type: map_at_3
296
+ value: 46.133
297
+ - type: map_at_5
298
+ value: 47.941
299
+ - type: mrr_at_1
300
+ value: 48.025
301
+ - type: mrr_at_10
302
+ value: 56.16100000000001
303
+ - type: mrr_at_100
304
+ value: 56.725
305
+ - type: mrr_at_1000
306
+ value: 56.757000000000005
307
+ - type: mrr_at_3
308
+ value: 54.31
309
+ - type: mrr_at_5
310
+ value: 55.285
311
+ - type: ndcg_at_1
312
+ value: 48.025
313
+ - type: ndcg_at_10
314
+ value: 55.467
315
+ - type: ndcg_at_100
316
+ value: 59.391000000000005
317
+ - type: ndcg_at_1000
318
+ value: 61.086
319
+ - type: ndcg_at_3
320
+ value: 51.733
321
+ - type: ndcg_at_5
322
+ value: 53.223
323
+ - type: precision_at_1
324
+ value: 48.025
325
+ - type: precision_at_10
326
+ value: 10.656
327
+ - type: precision_at_100
328
+ value: 1.6070000000000002
329
+ - type: precision_at_1000
330
+ value: 0.20600000000000002
331
+ - type: precision_at_3
332
+ value: 25.499
333
+ - type: precision_at_5
334
+ value: 17.771
335
+ - type: recall_at_1
336
+ value: 37.066
337
+ - type: recall_at_10
338
+ value: 65.062
339
+ - type: recall_at_100
340
+ value: 81.662
341
+ - type: recall_at_1000
342
+ value: 91.913
343
+ - type: recall_at_3
344
+ value: 52.734
345
+ - type: recall_at_5
346
+ value: 57.696999999999996
347
+ - type: map_at_1
348
+ value: 46.099000000000004
349
+ - type: map_at_10
350
+ value: 59.721999999999994
351
+ - type: map_at_100
352
+ value: 60.675000000000004
353
+ - type: map_at_1000
354
+ value: 60.708
355
+ - type: map_at_3
356
+ value: 55.852000000000004
357
+ - type: map_at_5
358
+ value: 58.426
359
+ - type: mrr_at_1
360
+ value: 53.417
361
+ - type: mrr_at_10
362
+ value: 63.597
363
+ - type: mrr_at_100
364
+ value: 64.12299999999999
365
+ - type: mrr_at_1000
366
+ value: 64.13799999999999
367
+ - type: mrr_at_3
368
+ value: 61.149
369
+ - type: mrr_at_5
370
+ value: 62.800999999999995
371
+ - type: ndcg_at_1
372
+ value: 53.417
373
+ - type: ndcg_at_10
374
+ value: 65.90899999999999
375
+ - type: ndcg_at_100
376
+ value: 69.312
377
+ - type: ndcg_at_1000
378
+ value: 69.89
379
+ - type: ndcg_at_3
380
+ value: 60.089999999999996
381
+ - type: ndcg_at_5
382
+ value: 63.575
383
+ - type: precision_at_1
384
+ value: 53.417
385
+ - type: precision_at_10
386
+ value: 10.533
387
+ - type: precision_at_100
388
+ value: 1.313
389
+ - type: precision_at_1000
390
+ value: 0.13899999999999998
391
+ - type: precision_at_3
392
+ value: 26.667
393
+ - type: precision_at_5
394
+ value: 18.671
395
+ - type: recall_at_1
396
+ value: 46.099000000000004
397
+ - type: recall_at_10
398
+ value: 80.134
399
+ - type: recall_at_100
400
+ value: 94.536
401
+ - type: recall_at_1000
402
+ value: 98.543
403
+ - type: recall_at_3
404
+ value: 65.026
405
+ - type: recall_at_5
406
+ value: 73.462
407
+ - type: map_at_1
408
+ value: 28.261999999999997
409
+ - type: map_at_10
410
+ value: 38.012
411
+ - type: map_at_100
412
+ value: 39.104
413
+ - type: map_at_1000
414
+ value: 39.177
415
+ - type: map_at_3
416
+ value: 35.068
417
+ - type: map_at_5
418
+ value: 36.620000000000005
419
+ - type: mrr_at_1
420
+ value: 30.847
421
+ - type: mrr_at_10
422
+ value: 40.251999999999995
423
+ - type: mrr_at_100
424
+ value: 41.174
425
+ - type: mrr_at_1000
426
+ value: 41.227999999999994
427
+ - type: mrr_at_3
428
+ value: 37.74
429
+ - type: mrr_at_5
430
+ value: 38.972
431
+ - type: ndcg_at_1
432
+ value: 30.847
433
+ - type: ndcg_at_10
434
+ value: 43.513000000000005
435
+ - type: ndcg_at_100
436
+ value: 48.771
437
+ - type: ndcg_at_1000
438
+ value: 50.501
439
+ - type: ndcg_at_3
440
+ value: 37.861
441
+ - type: ndcg_at_5
442
+ value: 40.366
443
+ - type: precision_at_1
444
+ value: 30.847
445
+ - type: precision_at_10
446
+ value: 6.7909999999999995
447
+ - type: precision_at_100
448
+ value: 0.992
449
+ - type: precision_at_1000
450
+ value: 0.117
451
+ - type: precision_at_3
452
+ value: 16.234
453
+ - type: precision_at_5
454
+ value: 11.254
455
+ - type: recall_at_1
456
+ value: 28.261999999999997
457
+ - type: recall_at_10
458
+ value: 58.292
459
+ - type: recall_at_100
460
+ value: 82.24000000000001
461
+ - type: recall_at_1000
462
+ value: 95.042
463
+ - type: recall_at_3
464
+ value: 42.955
465
+ - type: recall_at_5
466
+ value: 48.973
467
+ - type: map_at_1
468
+ value: 18.281
469
+ - type: map_at_10
470
+ value: 27.687
471
+ - type: map_at_100
472
+ value: 28.9
473
+ - type: map_at_1000
474
+ value: 29.019000000000002
475
+ - type: map_at_3
476
+ value: 24.773
477
+ - type: map_at_5
478
+ value: 26.180999999999997
479
+ - type: mrr_at_1
480
+ value: 23.01
481
+ - type: mrr_at_10
482
+ value: 32.225
483
+ - type: mrr_at_100
484
+ value: 33.054
485
+ - type: mrr_at_1000
486
+ value: 33.119
487
+ - type: mrr_at_3
488
+ value: 29.353
489
+ - type: mrr_at_5
490
+ value: 30.846
491
+ - type: ndcg_at_1
492
+ value: 23.01
493
+ - type: ndcg_at_10
494
+ value: 33.422000000000004
495
+ - type: ndcg_at_100
496
+ value: 39.108
497
+ - type: ndcg_at_1000
498
+ value: 41.699999999999996
499
+ - type: ndcg_at_3
500
+ value: 28.083999999999996
501
+ - type: ndcg_at_5
502
+ value: 30.164
503
+ - type: precision_at_1
504
+ value: 23.01
505
+ - type: precision_at_10
506
+ value: 6.493
507
+ - type: precision_at_100
508
+ value: 1.077
509
+ - type: precision_at_1000
510
+ value: 0.14100000000000001
511
+ - type: precision_at_3
512
+ value: 13.930000000000001
513
+ - type: precision_at_5
514
+ value: 10.075000000000001
515
+ - type: recall_at_1
516
+ value: 18.281
517
+ - type: recall_at_10
518
+ value: 46.318
519
+ - type: recall_at_100
520
+ value: 71.327
521
+ - type: recall_at_1000
522
+ value: 89.716
523
+ - type: recall_at_3
524
+ value: 31.517
525
+ - type: recall_at_5
526
+ value: 36.821
527
+ - type: map_at_1
528
+ value: 36.575
529
+ - type: map_at_10
530
+ value: 49.235
531
+ - type: map_at_100
532
+ value: 50.723
533
+ - type: map_at_1000
534
+ value: 50.809000000000005
535
+ - type: map_at_3
536
+ value: 45.696999999999996
537
+ - type: map_at_5
538
+ value: 47.588
539
+ - type: mrr_at_1
540
+ value: 45.525
541
+ - type: mrr_at_10
542
+ value: 55.334
543
+ - type: mrr_at_100
544
+ value: 56.092
545
+ - type: mrr_at_1000
546
+ value: 56.118
547
+ - type: mrr_at_3
548
+ value: 53.032000000000004
549
+ - type: mrr_at_5
550
+ value: 54.19199999999999
551
+ - type: ndcg_at_1
552
+ value: 45.525
553
+ - type: ndcg_at_10
554
+ value: 55.542
555
+ - type: ndcg_at_100
556
+ value: 60.879000000000005
557
+ - type: ndcg_at_1000
558
+ value: 62.224999999999994
559
+ - type: ndcg_at_3
560
+ value: 50.688
561
+ - type: ndcg_at_5
562
+ value: 52.76499999999999
563
+ - type: precision_at_1
564
+ value: 45.525
565
+ - type: precision_at_10
566
+ value: 10.067
567
+ - type: precision_at_100
568
+ value: 1.471
569
+ - type: precision_at_1000
570
+ value: 0.173
571
+ - type: precision_at_3
572
+ value: 24.382
573
+ - type: precision_at_5
574
+ value: 16.919999999999998
575
+ - type: recall_at_1
576
+ value: 36.575
577
+ - type: recall_at_10
578
+ value: 67.903
579
+ - type: recall_at_100
580
+ value: 89.464
581
+ - type: recall_at_1000
582
+ value: 97.799
583
+ - type: recall_at_3
584
+ value: 53.493
585
+ - type: recall_at_5
586
+ value: 59.372
587
+ - type: map_at_1
588
+ value: 29.099000000000004
589
+ - type: map_at_10
590
+ value: 42.147
591
+ - type: map_at_100
592
+ value: 43.522
593
+ - type: map_at_1000
594
+ value: 43.624
595
+ - type: map_at_3
596
+ value: 38.104
597
+ - type: map_at_5
598
+ value: 40.435
599
+ - type: mrr_at_1
600
+ value: 36.416
601
+ - type: mrr_at_10
602
+ value: 47.922
603
+ - type: mrr_at_100
604
+ value: 48.664
605
+ - type: mrr_at_1000
606
+ value: 48.709
607
+ - type: mrr_at_3
608
+ value: 44.977000000000004
609
+ - type: mrr_at_5
610
+ value: 46.838
611
+ - type: ndcg_at_1
612
+ value: 36.416
613
+ - type: ndcg_at_10
614
+ value: 49.307
615
+ - type: ndcg_at_100
616
+ value: 54.332
617
+ - type: ndcg_at_1000
618
+ value: 56.145
619
+ - type: ndcg_at_3
620
+ value: 42.994
621
+ - type: ndcg_at_5
622
+ value: 46.119
623
+ - type: precision_at_1
624
+ value: 36.416
625
+ - type: precision_at_10
626
+ value: 9.452
627
+ - type: precision_at_100
628
+ value: 1.4080000000000001
629
+ - type: precision_at_1000
630
+ value: 0.172
631
+ - type: precision_at_3
632
+ value: 21.081
633
+ - type: precision_at_5
634
+ value: 15.501999999999999
635
+ - type: recall_at_1
636
+ value: 29.099000000000004
637
+ - type: recall_at_10
638
+ value: 64.485
639
+ - type: recall_at_100
640
+ value: 84.753
641
+ - type: recall_at_1000
642
+ value: 96.875
643
+ - type: recall_at_3
644
+ value: 47.06
645
+ - type: recall_at_5
646
+ value: 55.077
647
+ - type: map_at_1
648
+ value: 30.69458333333333
649
+ - type: map_at_10
650
+ value: 41.65291666666666
651
+ - type: map_at_100
652
+ value: 42.95775
653
+ - type: map_at_1000
654
+ value: 43.06258333333333
655
+ - type: map_at_3
656
+ value: 38.335750000000004
657
+ - type: map_at_5
658
+ value: 40.20941666666666
659
+ - type: mrr_at_1
660
+ value: 37.013000000000005
661
+ - type: mrr_at_10
662
+ value: 46.30600000000001
663
+ - type: mrr_at_100
664
+ value: 47.094666666666676
665
+ - type: mrr_at_1000
666
+ value: 47.139583333333334
667
+ - type: mrr_at_3
668
+ value: 43.805749999999996
669
+ - type: mrr_at_5
670
+ value: 45.22366666666666
671
+ - type: ndcg_at_1
672
+ value: 37.013000000000005
673
+ - type: ndcg_at_10
674
+ value: 47.63491666666667
675
+ - type: ndcg_at_100
676
+ value: 52.71083333333334
677
+ - type: ndcg_at_1000
678
+ value: 54.493583333333326
679
+ - type: ndcg_at_3
680
+ value: 42.43616666666666
681
+ - type: ndcg_at_5
682
+ value: 44.87583333333334
683
+ - type: precision_at_1
684
+ value: 37.013000000000005
685
+ - type: precision_at_10
686
+ value: 8.481583333333333
687
+ - type: precision_at_100
688
+ value: 1.3073333333333337
689
+ - type: precision_at_1000
690
+ value: 0.16341666666666668
691
+ - type: precision_at_3
692
+ value: 19.811833333333333
693
+ - type: precision_at_5
694
+ value: 14.07691666666667
695
+ - type: recall_at_1
696
+ value: 30.69458333333333
697
+ - type: recall_at_10
698
+ value: 60.462083333333325
699
+ - type: recall_at_100
700
+ value: 82.42325000000001
701
+ - type: recall_at_1000
702
+ value: 94.53291666666667
703
+ - type: recall_at_3
704
+ value: 45.7405
705
+ - type: recall_at_5
706
+ value: 52.14025
707
+ - type: map_at_1
708
+ value: 27.833000000000002
709
+ - type: map_at_10
710
+ value: 36.55
711
+ - type: map_at_100
712
+ value: 37.524
713
+ - type: map_at_1000
714
+ value: 37.613
715
+ - type: map_at_3
716
+ value: 33.552
717
+ - type: map_at_5
718
+ value: 35.173
719
+ - type: mrr_at_1
720
+ value: 31.135
721
+ - type: mrr_at_10
722
+ value: 39.637
723
+ - type: mrr_at_100
724
+ value: 40.361000000000004
725
+ - type: mrr_at_1000
726
+ value: 40.422000000000004
727
+ - type: mrr_at_3
728
+ value: 36.887
729
+ - type: mrr_at_5
730
+ value: 38.428000000000004
731
+ - type: ndcg_at_1
732
+ value: 31.135
733
+ - type: ndcg_at_10
734
+ value: 42.007
735
+ - type: ndcg_at_100
736
+ value: 46.531
737
+ - type: ndcg_at_1000
738
+ value: 48.643
739
+ - type: ndcg_at_3
740
+ value: 36.437999999999995
741
+ - type: ndcg_at_5
742
+ value: 39.021
743
+ - type: precision_at_1
744
+ value: 31.135
745
+ - type: precision_at_10
746
+ value: 6.856
747
+ - type: precision_at_100
748
+ value: 0.988
749
+ - type: precision_at_1000
750
+ value: 0.125
751
+ - type: precision_at_3
752
+ value: 15.9
753
+ - type: precision_at_5
754
+ value: 11.227
755
+ - type: recall_at_1
756
+ value: 27.833000000000002
757
+ - type: recall_at_10
758
+ value: 55.711
759
+ - type: recall_at_100
760
+ value: 76.255
761
+ - type: recall_at_1000
762
+ value: 91.51899999999999
763
+ - type: recall_at_3
764
+ value: 40.22
765
+ - type: recall_at_5
766
+ value: 46.69
767
+ - type: map_at_1
768
+ value: 21.274
769
+ - type: map_at_10
770
+ value: 29.925
771
+ - type: map_at_100
772
+ value: 31.171
773
+ - type: map_at_1000
774
+ value: 31.296000000000003
775
+ - type: map_at_3
776
+ value: 27.209
777
+ - type: map_at_5
778
+ value: 28.707
779
+ - type: mrr_at_1
780
+ value: 26.462000000000003
781
+ - type: mrr_at_10
782
+ value: 34.604
783
+ - type: mrr_at_100
784
+ value: 35.554
785
+ - type: mrr_at_1000
786
+ value: 35.622
787
+ - type: mrr_at_3
788
+ value: 32.295
789
+ - type: mrr_at_5
790
+ value: 33.598
791
+ - type: ndcg_at_1
792
+ value: 26.462000000000003
793
+ - type: ndcg_at_10
794
+ value: 35.193000000000005
795
+ - type: ndcg_at_100
796
+ value: 40.876000000000005
797
+ - type: ndcg_at_1000
798
+ value: 43.442
799
+ - type: ndcg_at_3
800
+ value: 30.724
801
+ - type: ndcg_at_5
802
+ value: 32.735
803
+ - type: precision_at_1
804
+ value: 26.462000000000003
805
+ - type: precision_at_10
806
+ value: 6.438000000000001
807
+ - type: precision_at_100
808
+ value: 1.093
809
+ - type: precision_at_1000
810
+ value: 0.15
811
+ - type: precision_at_3
812
+ value: 14.636
813
+ - type: precision_at_5
814
+ value: 10.496
815
+ - type: recall_at_1
816
+ value: 21.274
817
+ - type: recall_at_10
818
+ value: 46.322
819
+ - type: recall_at_100
820
+ value: 71.702
821
+ - type: recall_at_1000
822
+ value: 89.405
823
+ - type: recall_at_3
824
+ value: 33.444
825
+ - type: recall_at_5
826
+ value: 38.83
827
+ - type: map_at_1
828
+ value: 31.174000000000003
829
+ - type: map_at_10
830
+ value: 42.798
831
+ - type: map_at_100
832
+ value: 43.996
833
+ - type: map_at_1000
834
+ value: 44.088
835
+ - type: map_at_3
836
+ value: 39.255
837
+ - type: map_at_5
838
+ value: 41.336
839
+ - type: mrr_at_1
840
+ value: 37.22
841
+ - type: mrr_at_10
842
+ value: 47.035
843
+ - type: mrr_at_100
844
+ value: 47.833999999999996
845
+ - type: mrr_at_1000
846
+ value: 47.88
847
+ - type: mrr_at_3
848
+ value: 44.248
849
+ - type: mrr_at_5
850
+ value: 45.815
851
+ - type: ndcg_at_1
852
+ value: 37.22
853
+ - type: ndcg_at_10
854
+ value: 48.931999999999995
855
+ - type: ndcg_at_100
856
+ value: 53.991
857
+ - type: ndcg_at_1000
858
+ value: 55.825
859
+ - type: ndcg_at_3
860
+ value: 43.144
861
+ - type: ndcg_at_5
862
+ value: 45.964
863
+ - type: precision_at_1
864
+ value: 37.22
865
+ - type: precision_at_10
866
+ value: 8.451
867
+ - type: precision_at_100
868
+ value: 1.2189999999999999
869
+ - type: precision_at_1000
870
+ value: 0.149
871
+ - type: precision_at_3
872
+ value: 20.087
873
+ - type: precision_at_5
874
+ value: 14.235000000000001
875
+ - type: recall_at_1
876
+ value: 31.174000000000003
877
+ - type: recall_at_10
878
+ value: 63.232
879
+ - type: recall_at_100
880
+ value: 84.747
881
+ - type: recall_at_1000
882
+ value: 97.006
883
+ - type: recall_at_3
884
+ value: 47.087
885
+ - type: recall_at_5
886
+ value: 54.493
887
+ - type: map_at_1
888
+ value: 29.628
889
+ - type: map_at_10
890
+ value: 39.995999999999995
891
+ - type: map_at_100
892
+ value: 41.899
893
+ - type: map_at_1000
894
+ value: 42.125
895
+ - type: map_at_3
896
+ value: 36.345
897
+ - type: map_at_5
898
+ value: 38.474000000000004
899
+ - type: mrr_at_1
900
+ value: 36.364000000000004
901
+ - type: mrr_at_10
902
+ value: 45.293
903
+ - type: mrr_at_100
904
+ value: 46.278999999999996
905
+ - type: mrr_at_1000
906
+ value: 46.318
907
+ - type: mrr_at_3
908
+ value: 42.522999999999996
909
+ - type: mrr_at_5
910
+ value: 44.104
911
+ - type: ndcg_at_1
912
+ value: 36.364000000000004
913
+ - type: ndcg_at_10
914
+ value: 46.622
915
+ - type: ndcg_at_100
916
+ value: 52.617000000000004
917
+ - type: ndcg_at_1000
918
+ value: 54.529
919
+ - type: ndcg_at_3
920
+ value: 40.971999999999994
921
+ - type: ndcg_at_5
922
+ value: 43.738
923
+ - type: precision_at_1
924
+ value: 36.364000000000004
925
+ - type: precision_at_10
926
+ value: 9.110999999999999
927
+ - type: precision_at_100
928
+ value: 1.846
929
+ - type: precision_at_1000
930
+ value: 0.256
931
+ - type: precision_at_3
932
+ value: 19.236
933
+ - type: precision_at_5
934
+ value: 14.269000000000002
935
+ - type: recall_at_1
936
+ value: 29.628
937
+ - type: recall_at_10
938
+ value: 58.706
939
+ - type: recall_at_100
940
+ value: 85.116
941
+ - type: recall_at_1000
942
+ value: 97.258
943
+ - type: recall_at_3
944
+ value: 42.655
945
+ - type: recall_at_5
946
+ value: 49.909
947
+ - type: map_at_1
948
+ value: 25.499
949
+ - type: map_at_10
950
+ value: 34.284
951
+ - type: map_at_100
952
+ value: 35.416
953
+ - type: map_at_1000
954
+ value: 35.494
955
+ - type: map_at_3
956
+ value: 31.911
957
+ - type: map_at_5
958
+ value: 33.159
959
+ - type: mrr_at_1
960
+ value: 28.096
961
+ - type: mrr_at_10
962
+ value: 36.699
963
+ - type: mrr_at_100
964
+ value: 37.657000000000004
965
+ - type: mrr_at_1000
966
+ value: 37.714999999999996
967
+ - type: mrr_at_3
968
+ value: 34.72
969
+ - type: mrr_at_5
970
+ value: 35.746
971
+ - type: ndcg_at_1
972
+ value: 28.096
973
+ - type: ndcg_at_10
974
+ value: 39.041
975
+ - type: ndcg_at_100
976
+ value: 44.633
977
+ - type: ndcg_at_1000
978
+ value: 46.522000000000006
979
+ - type: ndcg_at_3
980
+ value: 34.663
981
+ - type: ndcg_at_5
982
+ value: 36.538
983
+ - type: precision_at_1
984
+ value: 28.096
985
+ - type: precision_at_10
986
+ value: 6.0440000000000005
987
+ - type: precision_at_100
988
+ value: 0.9520000000000001
989
+ - type: precision_at_1000
990
+ value: 0.121
991
+ - type: precision_at_3
992
+ value: 14.911
993
+ - type: precision_at_5
994
+ value: 10.277
995
+ - type: recall_at_1
996
+ value: 25.499
997
+ - type: recall_at_10
998
+ value: 51.26199999999999
999
+ - type: recall_at_100
1000
+ value: 76.896
1001
+ - type: recall_at_1000
1002
+ value: 90.763
1003
+ - type: recall_at_3
1004
+ value: 39.376
1005
+ - type: recall_at_5
1006
+ value: 43.785000000000004
1007
+ - task:
1008
+ type: Retrieval
1009
+ dataset:
1010
+ name: MTEB ClimateFEVER
1011
+ type: climate-fever
1012
+ config: default
1013
+ split: test
1014
+ revision: None
1015
+ metrics:
1016
+ - type: map_at_1
1017
+ value: 10.532
1018
+ - type: map_at_10
1019
+ value: 19.911
1020
+ - type: map_at_100
1021
+ value: 21.926000000000002
1022
+ - type: map_at_1000
1023
+ value: 22.113
1024
+ - type: map_at_3
1025
+ value: 16.118
1026
+ - type: map_at_5
1027
+ value: 18.043
1028
+ - type: mrr_at_1
1029
+ value: 23.909
1030
+ - type: mrr_at_10
1031
+ value: 37.029
1032
+ - type: mrr_at_100
1033
+ value: 38.015
1034
+ - type: mrr_at_1000
1035
+ value: 38.054
1036
+ - type: mrr_at_3
1037
+ value: 33.29
1038
+ - type: mrr_at_5
1039
+ value: 35.446
1040
+ - type: ndcg_at_1
1041
+ value: 23.909
1042
+ - type: ndcg_at_10
1043
+ value: 28.691
1044
+ - type: ndcg_at_100
1045
+ value: 36.341
1046
+ - type: ndcg_at_1000
1047
+ value: 39.644
1048
+ - type: ndcg_at_3
1049
+ value: 22.561
1050
+ - type: ndcg_at_5
1051
+ value: 24.779999999999998
1052
+ - type: precision_at_1
1053
+ value: 23.909
1054
+ - type: precision_at_10
1055
+ value: 9.433
1056
+ - type: precision_at_100
1057
+ value: 1.763
1058
+ - type: precision_at_1000
1059
+ value: 0.23800000000000002
1060
+ - type: precision_at_3
1061
+ value: 17.438000000000002
1062
+ - type: precision_at_5
1063
+ value: 13.758999999999999
1064
+ - type: recall_at_1
1065
+ value: 10.532
1066
+ - type: recall_at_10
1067
+ value: 36.079
1068
+ - type: recall_at_100
1069
+ value: 62.156
1070
+ - type: recall_at_1000
1071
+ value: 80.53099999999999
1072
+ - type: recall_at_3
1073
+ value: 21.384
1074
+ - type: recall_at_5
1075
+ value: 27.29
1076
+ - task:
1077
+ type: Retrieval
1078
+ dataset:
1079
+ name: MTEB DBPedia
1080
+ type: dbpedia-entity
1081
+ config: default
1082
+ split: test
1083
+ revision: None
1084
+ metrics:
1085
+ - type: map_at_1
1086
+ value: 9.483
1087
+ - type: map_at_10
1088
+ value: 21.986
1089
+ - type: map_at_100
1090
+ value: 31.319000000000003
1091
+ - type: map_at_1000
1092
+ value: 33.231
1093
+ - type: map_at_3
1094
+ value: 15.193000000000001
1095
+ - type: map_at_5
1096
+ value: 18.116
1097
+ - type: mrr_at_1
1098
+ value: 74.0
1099
+ - type: mrr_at_10
1100
+ value: 80.047
1101
+ - type: mrr_at_100
1102
+ value: 80.406
1103
+ - type: mrr_at_1000
1104
+ value: 80.414
1105
+ - type: mrr_at_3
1106
+ value: 78.667
1107
+ - type: mrr_at_5
1108
+ value: 79.467
1109
+ - type: ndcg_at_1
1110
+ value: 61.875
1111
+ - type: ndcg_at_10
1112
+ value: 46.544999999999995
1113
+ - type: ndcg_at_100
1114
+ value: 51.097
1115
+ - type: ndcg_at_1000
1116
+ value: 58.331999999999994
1117
+ - type: ndcg_at_3
1118
+ value: 51.622
1119
+ - type: ndcg_at_5
1120
+ value: 49.016
1121
+ - type: precision_at_1
1122
+ value: 74.0
1123
+ - type: precision_at_10
1124
+ value: 37.325
1125
+ - type: precision_at_100
1126
+ value: 11.743
1127
+ - type: precision_at_1000
1128
+ value: 2.423
1129
+ - type: precision_at_3
1130
+ value: 54.75
1131
+ - type: precision_at_5
1132
+ value: 47.699999999999996
1133
+ - type: recall_at_1
1134
+ value: 9.483
1135
+ - type: recall_at_10
1136
+ value: 27.477
1137
+ - type: recall_at_100
1138
+ value: 57.099999999999994
1139
+ - type: recall_at_1000
1140
+ value: 80.56
1141
+ - type: recall_at_3
1142
+ value: 16.543
1143
+ - type: recall_at_5
1144
+ value: 20.830000000000002
1145
+ - task:
1146
+ type: Classification
1147
+ dataset:
1148
+ name: MTEB EmotionClassification
1149
+ type: mteb/emotion
1150
+ config: default
1151
+ split: test
1152
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1153
+ metrics:
1154
+ - type: accuracy
1155
+ value: 50.06
1156
+ - type: f1
1157
+ value: 44.99375486940016
1158
+ - task:
1159
+ type: Retrieval
1160
+ dataset:
1161
+ name: MTEB FEVER
1162
+ type: fever
1163
+ config: default
1164
+ split: test
1165
+ revision: None
1166
+ metrics:
1167
+ - type: map_at_1
1168
+ value: 70.94
1169
+ - type: map_at_10
1170
+ value: 80.854
1171
+ - type: map_at_100
1172
+ value: 81.096
1173
+ - type: map_at_1000
1174
+ value: 81.109
1175
+ - type: map_at_3
1176
+ value: 79.589
1177
+ - type: map_at_5
1178
+ value: 80.431
1179
+ - type: mrr_at_1
1180
+ value: 76.44800000000001
1181
+ - type: mrr_at_10
1182
+ value: 85.07000000000001
1183
+ - type: mrr_at_100
1184
+ value: 85.168
1185
+ - type: mrr_at_1000
1186
+ value: 85.17
1187
+ - type: mrr_at_3
1188
+ value: 84.221
1189
+ - type: mrr_at_5
1190
+ value: 84.832
1191
+ - type: ndcg_at_1
1192
+ value: 76.44800000000001
1193
+ - type: ndcg_at_10
1194
+ value: 85.019
1195
+ - type: ndcg_at_100
1196
+ value: 85.886
1197
+ - type: ndcg_at_1000
1198
+ value: 86.09400000000001
1199
+ - type: ndcg_at_3
1200
+ value: 83.023
1201
+ - type: ndcg_at_5
1202
+ value: 84.223
1203
+ - type: precision_at_1
1204
+ value: 76.44800000000001
1205
+ - type: precision_at_10
1206
+ value: 10.405000000000001
1207
+ - type: precision_at_100
1208
+ value: 1.105
1209
+ - type: precision_at_1000
1210
+ value: 0.11399999999999999
1211
+ - type: precision_at_3
1212
+ value: 32.208
1213
+ - type: precision_at_5
1214
+ value: 20.122999999999998
1215
+ - type: recall_at_1
1216
+ value: 70.94
1217
+ - type: recall_at_10
1218
+ value: 93.508
1219
+ - type: recall_at_100
1220
+ value: 96.962
1221
+ - type: recall_at_1000
1222
+ value: 98.24300000000001
1223
+ - type: recall_at_3
1224
+ value: 88.17099999999999
1225
+ - type: recall_at_5
1226
+ value: 91.191
1227
+ - task:
1228
+ type: Retrieval
1229
+ dataset:
1230
+ name: MTEB FiQA2018
1231
+ type: fiqa
1232
+ config: default
1233
+ split: test
1234
+ revision: None
1235
+ metrics:
1236
+ - type: map_at_1
1237
+ value: 23.844
1238
+ - type: map_at_10
1239
+ value: 41.629
1240
+ - type: map_at_100
1241
+ value: 43.766
1242
+ - type: map_at_1000
1243
+ value: 43.916
1244
+ - type: map_at_3
1245
+ value: 35.992000000000004
1246
+ - type: map_at_5
1247
+ value: 39.302
1248
+ - type: mrr_at_1
1249
+ value: 45.988
1250
+ - type: mrr_at_10
1251
+ value: 56.050999999999995
1252
+ - type: mrr_at_100
1253
+ value: 56.741
1254
+ - type: mrr_at_1000
1255
+ value: 56.767999999999994
1256
+ - type: mrr_at_3
1257
+ value: 53.498000000000005
1258
+ - type: mrr_at_5
1259
+ value: 55.071999999999996
1260
+ - type: ndcg_at_1
1261
+ value: 45.988
1262
+ - type: ndcg_at_10
1263
+ value: 49.891999999999996
1264
+ - type: ndcg_at_100
1265
+ value: 56.727000000000004
1266
+ - type: ndcg_at_1000
1267
+ value: 58.952000000000005
1268
+ - type: ndcg_at_3
1269
+ value: 45.09
1270
+ - type: ndcg_at_5
1271
+ value: 46.943
1272
+ - type: precision_at_1
1273
+ value: 45.988
1274
+ - type: precision_at_10
1275
+ value: 13.980999999999998
1276
+ - type: precision_at_100
1277
+ value: 2.136
1278
+ - type: precision_at_1000
1279
+ value: 0.252
1280
+ - type: precision_at_3
1281
+ value: 30.556
1282
+ - type: precision_at_5
1283
+ value: 22.778000000000002
1284
+ - type: recall_at_1
1285
+ value: 23.844
1286
+ - type: recall_at_10
1287
+ value: 58.46
1288
+ - type: recall_at_100
1289
+ value: 82.811
1290
+ - type: recall_at_1000
1291
+ value: 96.084
1292
+ - type: recall_at_3
1293
+ value: 41.636
1294
+ - type: recall_at_5
1295
+ value: 49.271
1296
+ - task:
1297
+ type: Retrieval
1298
+ dataset:
1299
+ name: MTEB HotpotQA
1300
+ type: hotpotqa
1301
+ config: default
1302
+ split: test
1303
+ revision: None
1304
+ metrics:
1305
+ - type: map_at_1
1306
+ value: 40.108
1307
+ - type: map_at_10
1308
+ value: 65.846
1309
+ - type: map_at_100
1310
+ value: 66.691
1311
+ - type: map_at_1000
1312
+ value: 66.743
1313
+ - type: map_at_3
1314
+ value: 62.09
1315
+ - type: map_at_5
1316
+ value: 64.412
1317
+ - type: mrr_at_1
1318
+ value: 80.216
1319
+ - type: mrr_at_10
1320
+ value: 85.768
1321
+ - type: mrr_at_100
1322
+ value: 85.92699999999999
1323
+ - type: mrr_at_1000
1324
+ value: 85.932
1325
+ - type: mrr_at_3
1326
+ value: 85.012
1327
+ - type: mrr_at_5
1328
+ value: 85.495
1329
+ - type: ndcg_at_1
1330
+ value: 80.216
1331
+ - type: ndcg_at_10
1332
+ value: 73.833
1333
+ - type: ndcg_at_100
1334
+ value: 76.68
1335
+ - type: ndcg_at_1000
1336
+ value: 77.639
1337
+ - type: ndcg_at_3
1338
+ value: 68.7
1339
+ - type: ndcg_at_5
1340
+ value: 71.514
1341
+ - type: precision_at_1
1342
+ value: 80.216
1343
+ - type: precision_at_10
1344
+ value: 15.616
1345
+ - type: precision_at_100
1346
+ value: 1.783
1347
+ - type: precision_at_1000
1348
+ value: 0.191
1349
+ - type: precision_at_3
1350
+ value: 44.483
1351
+ - type: precision_at_5
1352
+ value: 28.904999999999998
1353
+ - type: recall_at_1
1354
+ value: 40.108
1355
+ - type: recall_at_10
1356
+ value: 78.082
1357
+ - type: recall_at_100
1358
+ value: 89.129
1359
+ - type: recall_at_1000
1360
+ value: 95.381
1361
+ - type: recall_at_3
1362
+ value: 66.725
1363
+ - type: recall_at_5
1364
+ value: 72.262
1365
+ - task:
1366
+ type: Classification
1367
+ dataset:
1368
+ name: MTEB ImdbClassification
1369
+ type: mteb/imdb
1370
+ config: default
1371
+ split: test
1372
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1373
+ metrics:
1374
+ - type: accuracy
1375
+ value: 94.3208
1376
+ - type: ap
1377
+ value: 91.64852216825692
1378
+ - type: f1
1379
+ value: 94.31672442494217
1380
+ - task:
1381
+ type: Retrieval
1382
+ dataset:
1383
+ name: MTEB MSMARCO
1384
+ type: msmarco
1385
+ config: default
1386
+ split: dev
1387
+ revision: None
1388
+ metrics:
1389
+ - type: map_at_1
1390
+ value: 16.954
1391
+ - type: map_at_10
1392
+ value: 28.605000000000004
1393
+ - type: map_at_100
1394
+ value: 29.875
1395
+ - type: map_at_1000
1396
+ value: 29.934
1397
+ - type: map_at_3
1398
+ value: 24.57
1399
+ - type: map_at_5
1400
+ value: 26.845000000000002
1401
+ - type: mrr_at_1
1402
+ value: 17.407
1403
+ - type: mrr_at_10
1404
+ value: 29.082
1405
+ - type: mrr_at_100
1406
+ value: 30.309
1407
+ - type: mrr_at_1000
1408
+ value: 30.361
1409
+ - type: mrr_at_3
1410
+ value: 25.112000000000002
1411
+ - type: mrr_at_5
1412
+ value: 27.37
1413
+ - type: ndcg_at_1
1414
+ value: 17.407
1415
+ - type: ndcg_at_10
1416
+ value: 35.555
1417
+ - type: ndcg_at_100
1418
+ value: 41.808
1419
+ - type: ndcg_at_1000
1420
+ value: 43.277
1421
+ - type: ndcg_at_3
1422
+ value: 27.291999999999998
1423
+ - type: ndcg_at_5
1424
+ value: 31.369999999999997
1425
+ - type: precision_at_1
1426
+ value: 17.407
1427
+ - type: precision_at_10
1428
+ value: 5.9670000000000005
1429
+ - type: precision_at_100
1430
+ value: 0.9119999999999999
1431
+ - type: precision_at_1000
1432
+ value: 0.104
1433
+ - type: precision_at_3
1434
+ value: 11.939
1435
+ - type: precision_at_5
1436
+ value: 9.223
1437
+ - type: recall_at_1
1438
+ value: 16.954
1439
+ - type: recall_at_10
1440
+ value: 57.216
1441
+ - type: recall_at_100
1442
+ value: 86.384
1443
+ - type: recall_at_1000
1444
+ value: 97.64
1445
+ - type: recall_at_3
1446
+ value: 34.660999999999994
1447
+ - type: recall_at_5
1448
+ value: 44.484
1449
+ - task:
1450
+ type: Classification
1451
+ dataset:
1452
+ name: MTEB MTOPDomainClassification (en)
1453
+ type: mteb/mtop_domain
1454
+ config: en
1455
+ split: test
1456
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1457
+ metrics:
1458
+ - type: accuracy
1459
+ value: 95.29183766529867
1460
+ - type: f1
1461
+ value: 95.01282555921513
1462
+ - task:
1463
+ type: Classification
1464
+ dataset:
1465
+ name: MTEB MTOPIntentClassification (en)
1466
+ type: mteb/mtop_intent
1467
+ config: en
1468
+ split: test
1469
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1470
+ metrics:
1471
+ - type: accuracy
1472
+ value: 87.07934336525307
1473
+ - type: f1
1474
+ value: 69.58693991783085
1475
+ - task:
1476
+ type: Classification
1477
+ dataset:
1478
+ name: MTEB MassiveIntentClassification (en)
1479
+ type: mteb/amazon_massive_intent
1480
+ config: en
1481
+ split: test
1482
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1483
+ metrics:
1484
+ - type: accuracy
1485
+ value: 79.71755211835911
1486
+ - type: f1
1487
+ value: 77.08207736007755
1488
+ - task:
1489
+ type: Classification
1490
+ dataset:
1491
+ name: MTEB MassiveScenarioClassification (en)
1492
+ type: mteb/amazon_massive_scenario
1493
+ config: en
1494
+ split: test
1495
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1496
+ metrics:
1497
+ - type: accuracy
1498
+ value: 81.08607935440484
1499
+ - type: f1
1500
+ value: 80.71191664406739
1501
+ - task:
1502
+ type: Clustering
1503
+ dataset:
1504
+ name: MTEB MedrxivClusteringP2P
1505
+ type: mteb/medrxiv-clustering-p2p
1506
+ config: default
1507
+ split: test
1508
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1509
+ metrics:
1510
+ - type: v_measure
1511
+ value: 36.5355083590869
1512
+ - task:
1513
+ type: Clustering
1514
+ dataset:
1515
+ name: MTEB MedrxivClusteringS2S
1516
+ type: mteb/medrxiv-clustering-s2s
1517
+ config: default
1518
+ split: test
1519
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1520
+ metrics:
1521
+ - type: v_measure
1522
+ value: 37.24173539348128
1523
+ - task:
1524
+ type: Reranking
1525
+ dataset:
1526
+ name: MTEB MindSmallReranking
1527
+ type: mteb/mind_small
1528
+ config: default
1529
+ split: test
1530
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1531
+ metrics:
1532
+ - type: map
1533
+ value: 32.84293003435578
1534
+ - type: mrr
1535
+ value: 34.09721970493348
1536
+ - task:
1537
+ type: Retrieval
1538
+ dataset:
1539
+ name: MTEB NFCorpus
1540
+ type: nfcorpus
1541
+ config: default
1542
+ split: test
1543
+ revision: None
1544
+ metrics:
1545
+ - type: map_at_1
1546
+ value: 6.369
1547
+ - type: map_at_10
1548
+ value: 14.892
1549
+ - type: map_at_100
1550
+ value: 18.884999999999998
1551
+ - type: map_at_1000
1552
+ value: 20.43
1553
+ - type: map_at_3
1554
+ value: 10.735999999999999
1555
+ - type: map_at_5
1556
+ value: 12.703000000000001
1557
+ - type: mrr_at_1
1558
+ value: 50.15500000000001
1559
+ - type: mrr_at_10
1560
+ value: 59.948
1561
+ - type: mrr_at_100
1562
+ value: 60.422
1563
+ - type: mrr_at_1000
1564
+ value: 60.455999999999996
1565
+ - type: mrr_at_3
1566
+ value: 58.204
1567
+ - type: mrr_at_5
1568
+ value: 59.35
1569
+ - type: ndcg_at_1
1570
+ value: 47.678
1571
+ - type: ndcg_at_10
1572
+ value: 39.050000000000004
1573
+ - type: ndcg_at_100
1574
+ value: 35.905
1575
+ - type: ndcg_at_1000
1576
+ value: 44.662
1577
+ - type: ndcg_at_3
1578
+ value: 44.781
1579
+ - type: ndcg_at_5
1580
+ value: 42.549
1581
+ - type: precision_at_1
1582
+ value: 49.226
1583
+ - type: precision_at_10
1584
+ value: 28.762
1585
+ - type: precision_at_100
1586
+ value: 8.767999999999999
1587
+ - type: precision_at_1000
1588
+ value: 2.169
1589
+ - type: precision_at_3
1590
+ value: 41.796
1591
+ - type: precision_at_5
1592
+ value: 37.09
1593
+ - type: recall_at_1
1594
+ value: 6.369
1595
+ - type: recall_at_10
1596
+ value: 19.842000000000002
1597
+ - type: recall_at_100
1598
+ value: 37.017
1599
+ - type: recall_at_1000
1600
+ value: 68.444
1601
+ - type: recall_at_3
1602
+ value: 12.446
1603
+ - type: recall_at_5
1604
+ value: 15.525
1605
+ - task:
1606
+ type: Retrieval
1607
+ dataset:
1608
+ name: MTEB NQ
1609
+ type: nq
1610
+ config: default
1611
+ split: test
1612
+ revision: None
1613
+ metrics:
1614
+ - type: map_at_1
1615
+ value: 39.663
1616
+ - type: map_at_10
1617
+ value: 56.252
1618
+ - type: map_at_100
1619
+ value: 57.018
1620
+ - type: map_at_1000
1621
+ value: 57.031
1622
+ - type: map_at_3
1623
+ value: 52.020999999999994
1624
+ - type: map_at_5
1625
+ value: 54.626
1626
+ - type: mrr_at_1
1627
+ value: 44.699
1628
+ - type: mrr_at_10
1629
+ value: 58.819
1630
+ - type: mrr_at_100
1631
+ value: 59.351
1632
+ - type: mrr_at_1000
1633
+ value: 59.358
1634
+ - type: mrr_at_3
1635
+ value: 55.615
1636
+ - type: mrr_at_5
1637
+ value: 57.598000000000006
1638
+ - type: ndcg_at_1
1639
+ value: 44.699
1640
+ - type: ndcg_at_10
1641
+ value: 63.873999999999995
1642
+ - type: ndcg_at_100
1643
+ value: 66.973
1644
+ - type: ndcg_at_1000
1645
+ value: 67.23700000000001
1646
+ - type: ndcg_at_3
1647
+ value: 56.25599999999999
1648
+ - type: ndcg_at_5
1649
+ value: 60.44199999999999
1650
+ - type: precision_at_1
1651
+ value: 44.699
1652
+ - type: precision_at_10
1653
+ value: 10.075000000000001
1654
+ - type: precision_at_100
1655
+ value: 1.185
1656
+ - type: precision_at_1000
1657
+ value: 0.121
1658
+ - type: precision_at_3
1659
+ value: 25.202999999999996
1660
+ - type: precision_at_5
1661
+ value: 17.584
1662
+ - type: recall_at_1
1663
+ value: 39.663
1664
+ - type: recall_at_10
1665
+ value: 84.313
1666
+ - type: recall_at_100
1667
+ value: 97.56700000000001
1668
+ - type: recall_at_1000
1669
+ value: 99.44
1670
+ - type: recall_at_3
1671
+ value: 64.938
1672
+ - type: recall_at_5
1673
+ value: 74.515
1674
+ - task:
1675
+ type: Retrieval
1676
+ dataset:
1677
+ name: MTEB QuoraRetrieval
1678
+ type: quora
1679
+ config: default
1680
+ split: test
1681
+ revision: None
1682
+ metrics:
1683
+ - type: map_at_1
1684
+ value: 69.708
1685
+ - type: map_at_10
1686
+ value: 83.86099999999999
1687
+ - type: map_at_100
1688
+ value: 84.513
1689
+ - type: map_at_1000
1690
+ value: 84.53
1691
+ - type: map_at_3
1692
+ value: 80.854
1693
+ - type: map_at_5
1694
+ value: 82.757
1695
+ - type: mrr_at_1
1696
+ value: 80.15
1697
+ - type: mrr_at_10
1698
+ value: 86.70400000000001
1699
+ - type: mrr_at_100
1700
+ value: 86.81400000000001
1701
+ - type: mrr_at_1000
1702
+ value: 86.815
1703
+ - type: mrr_at_3
1704
+ value: 85.658
1705
+ - type: mrr_at_5
1706
+ value: 86.37599999999999
1707
+ - type: ndcg_at_1
1708
+ value: 80.17
1709
+ - type: ndcg_at_10
1710
+ value: 87.7
1711
+ - type: ndcg_at_100
1712
+ value: 88.979
1713
+ - type: ndcg_at_1000
1714
+ value: 89.079
1715
+ - type: ndcg_at_3
1716
+ value: 84.71600000000001
1717
+ - type: ndcg_at_5
1718
+ value: 86.385
1719
+ - type: precision_at_1
1720
+ value: 80.17
1721
+ - type: precision_at_10
1722
+ value: 13.369
1723
+ - type: precision_at_100
1724
+ value: 1.53
1725
+ - type: precision_at_1000
1726
+ value: 0.157
1727
+ - type: precision_at_3
1728
+ value: 37.123
1729
+ - type: precision_at_5
1730
+ value: 24.498
1731
+ - type: recall_at_1
1732
+ value: 69.708
1733
+ - type: recall_at_10
1734
+ value: 95.17099999999999
1735
+ - type: recall_at_100
1736
+ value: 99.529
1737
+ - type: recall_at_1000
1738
+ value: 99.97500000000001
1739
+ - type: recall_at_3
1740
+ value: 86.761
1741
+ - type: recall_at_5
1742
+ value: 91.34
1743
+ - task:
1744
+ type: Clustering
1745
+ dataset:
1746
+ name: MTEB RedditClustering
1747
+ type: mteb/reddit-clustering
1748
+ config: default
1749
+ split: test
1750
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1751
+ metrics:
1752
+ - type: v_measure
1753
+ value: 63.005610557842786
1754
+ - task:
1755
+ type: Clustering
1756
+ dataset:
1757
+ name: MTEB RedditClusteringP2P
1758
+ type: mteb/reddit-clustering-p2p
1759
+ config: default
1760
+ split: test
1761
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1762
+ metrics:
1763
+ - type: v_measure
1764
+ value: 65.85897055439158
1765
+ - task:
1766
+ type: Retrieval
1767
+ dataset:
1768
+ name: MTEB SCIDOCS
1769
+ type: scidocs
1770
+ config: default
1771
+ split: test
1772
+ revision: None
1773
+ metrics:
1774
+ - type: map_at_1
1775
+ value: 5.388
1776
+ - type: map_at_10
1777
+ value: 14.087
1778
+ - type: map_at_100
1779
+ value: 16.618
1780
+ - type: map_at_1000
1781
+ value: 16.967
1782
+ - type: map_at_3
1783
+ value: 9.8
1784
+ - type: map_at_5
1785
+ value: 11.907
1786
+ - type: mrr_at_1
1787
+ value: 26.5
1788
+ - type: mrr_at_10
1789
+ value: 37.905
1790
+ - type: mrr_at_100
1791
+ value: 39.053
1792
+ - type: mrr_at_1000
1793
+ value: 39.091
1794
+ - type: mrr_at_3
1795
+ value: 34.567
1796
+ - type: mrr_at_5
1797
+ value: 36.307
1798
+ - type: ndcg_at_1
1799
+ value: 26.5
1800
+ - type: ndcg_at_10
1801
+ value: 23.06
1802
+ - type: ndcg_at_100
1803
+ value: 32.164
1804
+ - type: ndcg_at_1000
1805
+ value: 37.574000000000005
1806
+ - type: ndcg_at_3
1807
+ value: 21.623
1808
+ - type: ndcg_at_5
1809
+ value: 18.95
1810
+ - type: precision_at_1
1811
+ value: 26.5
1812
+ - type: precision_at_10
1813
+ value: 12.030000000000001
1814
+ - type: precision_at_100
1815
+ value: 2.5020000000000002
1816
+ - type: precision_at_1000
1817
+ value: 0.379
1818
+ - type: precision_at_3
1819
+ value: 20.200000000000003
1820
+ - type: precision_at_5
1821
+ value: 16.64
1822
+ - type: recall_at_1
1823
+ value: 5.388
1824
+ - type: recall_at_10
1825
+ value: 24.375
1826
+ - type: recall_at_100
1827
+ value: 50.818
1828
+ - type: recall_at_1000
1829
+ value: 76.86699999999999
1830
+ - type: recall_at_3
1831
+ value: 12.273
1832
+ - type: recall_at_5
1833
+ value: 16.858
1834
+ - task:
1835
+ type: STS
1836
+ dataset:
1837
+ name: MTEB SICK-R
1838
+ type: mteb/sickr-sts
1839
+ config: default
1840
+ split: test
1841
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1842
+ metrics:
1843
+ - type: cos_sim_pearson
1844
+ value: 85.09465497223438
1845
+ - type: cos_sim_spearman
1846
+ value: 80.55601111843897
1847
+ - type: euclidean_pearson
1848
+ value: 82.40135168520864
1849
+ - type: euclidean_spearman
1850
+ value: 80.05606361845396
1851
+ - type: manhattan_pearson
1852
+ value: 82.24092291787754
1853
+ - type: manhattan_spearman
1854
+ value: 79.89739846820373
1855
+ - task:
1856
+ type: STS
1857
+ dataset:
1858
+ name: MTEB STS12
1859
+ type: mteb/sts12-sts
1860
+ config: default
1861
+ split: test
1862
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1863
+ metrics:
1864
+ - type: cos_sim_pearson
1865
+ value: 81.14210597635189
1866
+ - type: cos_sim_spearman
1867
+ value: 73.69447481152118
1868
+ - type: euclidean_pearson
1869
+ value: 75.08507068029972
1870
+ - type: euclidean_spearman
1871
+ value: 71.04077458564372
1872
+ - type: manhattan_pearson
1873
+ value: 75.64918699307383
1874
+ - type: manhattan_spearman
1875
+ value: 71.61677355593945
1876
+ - task:
1877
+ type: STS
1878
+ dataset:
1879
+ name: MTEB STS13
1880
+ type: mteb/sts13-sts
1881
+ config: default
1882
+ split: test
1883
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1884
+ metrics:
1885
+ - type: cos_sim_pearson
1886
+ value: 85.41396417076866
1887
+ - type: cos_sim_spearman
1888
+ value: 85.82245898186092
1889
+ - type: euclidean_pearson
1890
+ value: 85.58527168297935
1891
+ - type: euclidean_spearman
1892
+ value: 85.94613250938504
1893
+ - type: manhattan_pearson
1894
+ value: 85.88114899068759
1895
+ - type: manhattan_spearman
1896
+ value: 86.42494392145366
1897
+ - task:
1898
+ type: STS
1899
+ dataset:
1900
+ name: MTEB STS14
1901
+ type: mteb/sts14-sts
1902
+ config: default
1903
+ split: test
1904
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1905
+ metrics:
1906
+ - type: cos_sim_pearson
1907
+ value: 83.7431948980468
1908
+ - type: cos_sim_spearman
1909
+ value: 82.05114289801895
1910
+ - type: euclidean_pearson
1911
+ value: 83.06116666914892
1912
+ - type: euclidean_spearman
1913
+ value: 81.82060562251957
1914
+ - type: manhattan_pearson
1915
+ value: 83.1858437025367
1916
+ - type: manhattan_spearman
1917
+ value: 82.09604293088852
1918
+ - task:
1919
+ type: STS
1920
+ dataset:
1921
+ name: MTEB STS15
1922
+ type: mteb/sts15-sts
1923
+ config: default
1924
+ split: test
1925
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1926
+ metrics:
1927
+ - type: cos_sim_pearson
1928
+ value: 88.455985912287
1929
+ - type: cos_sim_spearman
1930
+ value: 88.8044343107975
1931
+ - type: euclidean_pearson
1932
+ value: 87.155336804123
1933
+ - type: euclidean_spearman
1934
+ value: 87.79371420531842
1935
+ - type: manhattan_pearson
1936
+ value: 87.5784376507174
1937
+ - type: manhattan_spearman
1938
+ value: 88.429877987816
1939
+ - task:
1940
+ type: STS
1941
+ dataset:
1942
+ name: MTEB STS16
1943
+ type: mteb/sts16-sts
1944
+ config: default
1945
+ split: test
1946
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
1947
+ metrics:
1948
+ - type: cos_sim_pearson
1949
+ value: 85.1631000795076
1950
+ - type: cos_sim_spearman
1951
+ value: 86.20042158061408
1952
+ - type: euclidean_pearson
1953
+ value: 84.88605965960737
1954
+ - type: euclidean_spearman
1955
+ value: 85.45926745772432
1956
+ - type: manhattan_pearson
1957
+ value: 85.18333987666729
1958
+ - type: manhattan_spearman
1959
+ value: 85.86048911387192
1960
+ - task:
1961
+ type: STS
1962
+ dataset:
1963
+ name: MTEB STS17 (en-en)
1964
+ type: mteb/sts17-crosslingual-sts
1965
+ config: en-en
1966
+ split: test
1967
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1968
+ metrics:
1969
+ - type: cos_sim_pearson
1970
+ value: 91.51301667439836
1971
+ - type: cos_sim_spearman
1972
+ value: 91.46469919011143
1973
+ - type: euclidean_pearson
1974
+ value: 91.15157693133415
1975
+ - type: euclidean_spearman
1976
+ value: 91.02656400119739
1977
+ - type: manhattan_pearson
1978
+ value: 91.08411259466446
1979
+ - type: manhattan_spearman
1980
+ value: 90.84339904461068
1981
+ - task:
1982
+ type: STS
1983
+ dataset:
1984
+ name: MTEB STS22 (en)
1985
+ type: mteb/sts22-crosslingual-sts
1986
+ config: en
1987
+ split: test
1988
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
1989
+ metrics:
1990
+ - type: cos_sim_pearson
1991
+ value: 69.08993728439704
1992
+ - type: cos_sim_spearman
1993
+ value: 69.20885645170797
1994
+ - type: euclidean_pearson
1995
+ value: 69.65638507632245
1996
+ - type: euclidean_spearman
1997
+ value: 68.69831912688514
1998
+ - type: manhattan_pearson
1999
+ value: 69.86621764969294
2000
+ - type: manhattan_spearman
2001
+ value: 69.05446631856769
2002
+ - task:
2003
+ type: STS
2004
+ dataset:
2005
+ name: MTEB STSBenchmark
2006
+ type: mteb/stsbenchmark-sts
2007
+ config: default
2008
+ split: test
2009
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2010
+ metrics:
2011
+ - type: cos_sim_pearson
2012
+ value: 86.96149243197495
2013
+ - type: cos_sim_spearman
2014
+ value: 87.43145597912833
2015
+ - type: euclidean_pearson
2016
+ value: 86.6762329641158
2017
+ - type: euclidean_spearman
2018
+ value: 86.67085254401809
2019
+ - type: manhattan_pearson
2020
+ value: 87.06412701458164
2021
+ - type: manhattan_spearman
2022
+ value: 87.10197412769807
2023
+ - task:
2024
+ type: Reranking
2025
+ dataset:
2026
+ name: MTEB SciDocsRR
2027
+ type: mteb/scidocs-reranking
2028
+ config: default
2029
+ split: test
2030
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2031
+ metrics:
2032
+ - type: map
2033
+ value: 86.43440918697488
2034
+ - type: mrr
2035
+ value: 96.3954826945023
2036
+ - task:
2037
+ type: Retrieval
2038
+ dataset:
2039
+ name: MTEB SciFact
2040
+ type: scifact
2041
+ config: default
2042
+ split: test
2043
+ revision: None
2044
+ metrics:
2045
+ - type: map_at_1
2046
+ value: 60.494
2047
+ - type: map_at_10
2048
+ value: 72.074
2049
+ - type: map_at_100
2050
+ value: 72.475
2051
+ - type: map_at_1000
2052
+ value: 72.483
2053
+ - type: map_at_3
2054
+ value: 68.983
2055
+ - type: map_at_5
2056
+ value: 71.161
2057
+ - type: mrr_at_1
2058
+ value: 63.666999999999994
2059
+ - type: mrr_at_10
2060
+ value: 73.31299999999999
2061
+ - type: mrr_at_100
2062
+ value: 73.566
2063
+ - type: mrr_at_1000
2064
+ value: 73.574
2065
+ - type: mrr_at_3
2066
+ value: 71.111
2067
+ - type: mrr_at_5
2068
+ value: 72.72800000000001
2069
+ - type: ndcg_at_1
2070
+ value: 63.666999999999994
2071
+ - type: ndcg_at_10
2072
+ value: 77.024
2073
+ - type: ndcg_at_100
2074
+ value: 78.524
2075
+ - type: ndcg_at_1000
2076
+ value: 78.842
2077
+ - type: ndcg_at_3
2078
+ value: 72.019
2079
+ - type: ndcg_at_5
2080
+ value: 75.22999999999999
2081
+ - type: precision_at_1
2082
+ value: 63.666999999999994
2083
+ - type: precision_at_10
2084
+ value: 10.2
2085
+ - type: precision_at_100
2086
+ value: 1.103
2087
+ - type: precision_at_1000
2088
+ value: 0.11299999999999999
2089
+ - type: precision_at_3
2090
+ value: 28.111000000000004
2091
+ - type: precision_at_5
2092
+ value: 19.0
2093
+ - type: recall_at_1
2094
+ value: 60.494
2095
+ - type: recall_at_10
2096
+ value: 90.8
2097
+ - type: recall_at_100
2098
+ value: 97.333
2099
+ - type: recall_at_1000
2100
+ value: 100.0
2101
+ - type: recall_at_3
2102
+ value: 77.644
2103
+ - type: recall_at_5
2104
+ value: 85.694
2105
+ - task:
2106
+ type: PairClassification
2107
+ dataset:
2108
+ name: MTEB SprintDuplicateQuestions
2109
+ type: mteb/sprintduplicatequestions-pairclassification
2110
+ config: default
2111
+ split: test
2112
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2113
+ metrics:
2114
+ - type: cos_sim_accuracy
2115
+ value: 99.68415841584158
2116
+ - type: cos_sim_ap
2117
+ value: 91.23713949701548
2118
+ - type: cos_sim_f1
2119
+ value: 83.70221327967808
2120
+ - type: cos_sim_precision
2121
+ value: 84.21052631578947
2122
+ - type: cos_sim_recall
2123
+ value: 83.2
2124
+ - type: dot_accuracy
2125
+ value: 99.5
2126
+ - type: dot_ap
2127
+ value: 79.46312132270363
2128
+ - type: dot_f1
2129
+ value: 72.75320970042794
2130
+ - type: dot_precision
2131
+ value: 69.35630099728014
2132
+ - type: dot_recall
2133
+ value: 76.5
2134
+ - type: euclidean_accuracy
2135
+ value: 99.69108910891089
2136
+ - type: euclidean_ap
2137
+ value: 90.9016163254649
2138
+ - type: euclidean_f1
2139
+ value: 83.91752577319586
2140
+ - type: euclidean_precision
2141
+ value: 86.59574468085106
2142
+ - type: euclidean_recall
2143
+ value: 81.39999999999999
2144
+ - type: manhattan_accuracy
2145
+ value: 99.7039603960396
2146
+ - type: manhattan_ap
2147
+ value: 91.5593806619311
2148
+ - type: manhattan_f1
2149
+ value: 85.08124076809453
2150
+ - type: manhattan_precision
2151
+ value: 83.80213385063045
2152
+ - type: manhattan_recall
2153
+ value: 86.4
2154
+ - type: max_accuracy
2155
+ value: 99.7039603960396
2156
+ - type: max_ap
2157
+ value: 91.5593806619311
2158
+ - type: max_f1
2159
+ value: 85.08124076809453
2160
+ - task:
2161
+ type: Clustering
2162
+ dataset:
2163
+ name: MTEB StackExchangeClustering
2164
+ type: mteb/stackexchange-clustering
2165
+ config: default
2166
+ split: test
2167
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2168
+ metrics:
2169
+ - type: v_measure
2170
+ value: 74.40806543281603
2171
+ - task:
2172
+ type: Clustering
2173
+ dataset:
2174
+ name: MTEB StackExchangeClusteringP2P
2175
+ type: mteb/stackexchange-clustering-p2p
2176
+ config: default
2177
+ split: test
2178
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2179
+ metrics:
2180
+ - type: v_measure
2181
+ value: 38.51757703316821
2182
+ - task:
2183
+ type: Reranking
2184
+ dataset:
2185
+ name: MTEB StackOverflowDupQuestions
2186
+ type: mteb/stackoverflowdupquestions-reranking
2187
+ config: default
2188
+ split: test
2189
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2190
+ metrics:
2191
+ - type: map
2192
+ value: 54.33475593449746
2193
+ - type: mrr
2194
+ value: 55.3374474789916
2195
+ - task:
2196
+ type: Summarization
2197
+ dataset:
2198
+ name: MTEB SummEval
2199
+ type: mteb/summeval
2200
+ config: default
2201
+ split: test
2202
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2203
+ metrics:
2204
+ - type: cos_sim_pearson
2205
+ value: 30.249926396023596
2206
+ - type: cos_sim_spearman
2207
+ value: 29.820375700458158
2208
+ - type: dot_pearson
2209
+ value: 28.820307635930355
2210
+ - type: dot_spearman
2211
+ value: 28.824273052746825
2212
+ - task:
2213
+ type: Retrieval
2214
+ dataset:
2215
+ name: MTEB TRECCOVID
2216
+ type: trec-covid
2217
+ config: default
2218
+ split: test
2219
+ revision: None
2220
+ metrics:
2221
+ - type: map_at_1
2222
+ value: 0.233
2223
+ - type: map_at_10
2224
+ value: 2.061
2225
+ - type: map_at_100
2226
+ value: 12.607
2227
+ - type: map_at_1000
2228
+ value: 30.031000000000002
2229
+ - type: map_at_3
2230
+ value: 0.6669999999999999
2231
+ - type: map_at_5
2232
+ value: 1.091
2233
+ - type: mrr_at_1
2234
+ value: 88.0
2235
+ - type: mrr_at_10
2236
+ value: 93.067
2237
+ - type: mrr_at_100
2238
+ value: 93.067
2239
+ - type: mrr_at_1000
2240
+ value: 93.067
2241
+ - type: mrr_at_3
2242
+ value: 92.667
2243
+ - type: mrr_at_5
2244
+ value: 93.067
2245
+ - type: ndcg_at_1
2246
+ value: 84.0
2247
+ - type: ndcg_at_10
2248
+ value: 81.072
2249
+ - type: ndcg_at_100
2250
+ value: 62.875
2251
+ - type: ndcg_at_1000
2252
+ value: 55.641
2253
+ - type: ndcg_at_3
2254
+ value: 85.296
2255
+ - type: ndcg_at_5
2256
+ value: 84.10499999999999
2257
+ - type: precision_at_1
2258
+ value: 88.0
2259
+ - type: precision_at_10
2260
+ value: 83.39999999999999
2261
+ - type: precision_at_100
2262
+ value: 63.7
2263
+ - type: precision_at_1000
2264
+ value: 24.622
2265
+ - type: precision_at_3
2266
+ value: 88.0
2267
+ - type: precision_at_5
2268
+ value: 87.2
2269
+ - type: recall_at_1
2270
+ value: 0.233
2271
+ - type: recall_at_10
2272
+ value: 2.188
2273
+ - type: recall_at_100
2274
+ value: 15.52
2275
+ - type: recall_at_1000
2276
+ value: 52.05499999999999
2277
+ - type: recall_at_3
2278
+ value: 0.6859999999999999
2279
+ - type: recall_at_5
2280
+ value: 1.1440000000000001
2281
+ - task:
2282
+ type: Retrieval
2283
+ dataset:
2284
+ name: MTEB Touche2020
2285
+ type: webis-touche2020
2286
+ config: default
2287
+ split: test
2288
+ revision: None
2289
+ metrics:
2290
+ - type: map_at_1
2291
+ value: 3.19
2292
+ - type: map_at_10
2293
+ value: 11.491999999999999
2294
+ - type: map_at_100
2295
+ value: 17.251
2296
+ - type: map_at_1000
2297
+ value: 18.795
2298
+ - type: map_at_3
2299
+ value: 6.146
2300
+ - type: map_at_5
2301
+ value: 8.113
2302
+ - type: mrr_at_1
2303
+ value: 44.897999999999996
2304
+ - type: mrr_at_10
2305
+ value: 56.57
2306
+ - type: mrr_at_100
2307
+ value: 57.348
2308
+ - type: mrr_at_1000
2309
+ value: 57.357
2310
+ - type: mrr_at_3
2311
+ value: 52.041000000000004
2312
+ - type: mrr_at_5
2313
+ value: 55.408
2314
+ - type: ndcg_at_1
2315
+ value: 40.816
2316
+ - type: ndcg_at_10
2317
+ value: 27.968
2318
+ - type: ndcg_at_100
2319
+ value: 39.0
2320
+ - type: ndcg_at_1000
2321
+ value: 50.292
2322
+ - type: ndcg_at_3
2323
+ value: 31.256
2324
+ - type: ndcg_at_5
2325
+ value: 28.855999999999998
2326
+ - type: precision_at_1
2327
+ value: 44.897999999999996
2328
+ - type: precision_at_10
2329
+ value: 24.285999999999998
2330
+ - type: precision_at_100
2331
+ value: 7.898
2332
+ - type: precision_at_1000
2333
+ value: 1.541
2334
+ - type: precision_at_3
2335
+ value: 30.612000000000002
2336
+ - type: precision_at_5
2337
+ value: 27.346999999999998
2338
+ - type: recall_at_1
2339
+ value: 3.19
2340
+ - type: recall_at_10
2341
+ value: 17.954
2342
+ - type: recall_at_100
2343
+ value: 48.793
2344
+ - type: recall_at_1000
2345
+ value: 83.357
2346
+ - type: recall_at_3
2347
+ value: 6.973999999999999
2348
+ - type: recall_at_5
2349
+ value: 10.391
2350
+ - task:
2351
+ type: Classification
2352
+ dataset:
2353
+ name: MTEB ToxicConversationsClassification
2354
+ type: mteb/toxic_conversations_50k
2355
+ config: default
2356
+ split: test
2357
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2358
+ metrics:
2359
+ - type: accuracy
2360
+ value: 70.89139999999999
2361
+ - type: ap
2362
+ value: 15.562539739828049
2363
+ - type: f1
2364
+ value: 55.38685639741247
2365
+ - task:
2366
+ type: Classification
2367
+ dataset:
2368
+ name: MTEB TweetSentimentExtractionClassification
2369
+ type: mteb/tweet_sentiment_extraction
2370
+ config: default
2371
+ split: test
2372
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2373
+ metrics:
2374
+ - type: accuracy
2375
+ value: 62.48160724391625
2376
+ - type: f1
2377
+ value: 62.76700854121342
2378
+ - task:
2379
+ type: Clustering
2380
+ dataset:
2381
+ name: MTEB TwentyNewsgroupsClustering
2382
+ type: mteb/twentynewsgroups-clustering
2383
+ config: default
2384
+ split: test
2385
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2386
+ metrics:
2387
+ - type: v_measure
2388
+ value: 57.157071531498275
2389
+ - task:
2390
+ type: PairClassification
2391
+ dataset:
2392
+ name: MTEB TwitterSemEval2015
2393
+ type: mteb/twittersemeval2015-pairclassification
2394
+ config: default
2395
+ split: test
2396
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2397
+ metrics:
2398
+ - type: cos_sim_accuracy
2399
+ value: 87.15503367705789
2400
+ - type: cos_sim_ap
2401
+ value: 77.20584529783206
2402
+ - type: cos_sim_f1
2403
+ value: 71.3558088770313
2404
+ - type: cos_sim_precision
2405
+ value: 66.02333931777379
2406
+ - type: cos_sim_recall
2407
+ value: 77.62532981530343
2408
+ - type: dot_accuracy
2409
+ value: 83.10186564940096
2410
+ - type: dot_ap
2411
+ value: 64.34160146443133
2412
+ - type: dot_f1
2413
+ value: 63.23048153342683
2414
+ - type: dot_precision
2415
+ value: 56.75618967687789
2416
+ - type: dot_recall
2417
+ value: 71.37203166226914
2418
+ - type: euclidean_accuracy
2419
+ value: 86.94045419324074
2420
+ - type: euclidean_ap
2421
+ value: 76.08471767931738
2422
+ - type: euclidean_f1
2423
+ value: 71.41248592518455
2424
+ - type: euclidean_precision
2425
+ value: 67.90387818225078
2426
+ - type: euclidean_recall
2427
+ value: 75.30343007915567
2428
+ - type: manhattan_accuracy
2429
+ value: 86.80932228646361
2430
+ - type: manhattan_ap
2431
+ value: 76.03862870753638
2432
+ - type: manhattan_f1
2433
+ value: 71.2660917385327
2434
+ - type: manhattan_precision
2435
+ value: 67.70363334124912
2436
+ - type: manhattan_recall
2437
+ value: 75.22427440633246
2438
+ - type: max_accuracy
2439
+ value: 87.15503367705789
2440
+ - type: max_ap
2441
+ value: 77.20584529783206
2442
+ - type: max_f1
2443
+ value: 71.41248592518455
2444
+ - task:
2445
+ type: PairClassification
2446
+ dataset:
2447
+ name: MTEB TwitterURLCorpus
2448
+ type: mteb/twitterurlcorpus-pairclassification
2449
+ config: default
2450
+ split: test
2451
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2452
+ metrics:
2453
+ - type: cos_sim_accuracy
2454
+ value: 89.42639810610471
2455
+ - type: cos_sim_ap
2456
+ value: 86.45196525133669
2457
+ - type: cos_sim_f1
2458
+ value: 79.25172592977508
2459
+ - type: cos_sim_precision
2460
+ value: 76.50852802063925
2461
+ - type: cos_sim_recall
2462
+ value: 82.19895287958116
2463
+ - type: dot_accuracy
2464
+ value: 87.03768385919976
2465
+ - type: dot_ap
2466
+ value: 80.86465404774172
2467
+ - type: dot_f1
2468
+ value: 74.50351637940457
2469
+ - type: dot_precision
2470
+ value: 70.72293324109305
2471
+ - type: dot_recall
2472
+ value: 78.71111795503542
2473
+ - type: euclidean_accuracy
2474
+ value: 89.29056545193464
2475
+ - type: euclidean_ap
2476
+ value: 86.25102188096191
2477
+ - type: euclidean_f1
2478
+ value: 79.05038057267126
2479
+ - type: euclidean_precision
2480
+ value: 74.681550472538
2481
+ - type: euclidean_recall
2482
+ value: 83.9621188789652
2483
+ - type: manhattan_accuracy
2484
+ value: 89.34877944657896
2485
+ - type: manhattan_ap
2486
+ value: 86.35336214205911
2487
+ - type: manhattan_f1
2488
+ value: 79.20192588269623
2489
+ - type: manhattan_precision
2490
+ value: 75.24951483227058
2491
+ - type: manhattan_recall
2492
+ value: 83.59254696643055
2493
+ - type: max_accuracy
2494
+ value: 89.42639810610471
2495
+ - type: max_ap
2496
+ value: 86.45196525133669
2497
+ - type: max_f1
2498
+ value: 79.25172592977508
2499
+ ---
2500
+
2501
+ <div style="width: auto; margin-left: auto; margin-right: auto">
2502
+ <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
2503
+ </div>
2504
+ <div style="display: flex; justify-content: space-between; width: 100%;">
2505
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
2506
+ <p style="margin-top: 0.5em; margin-bottom: 0em;">
2507
+ Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
2508
+ </p>
2509
+ </div>
2510
+ </div>
2511
+
2512
+ ## GritLM/GritLM-8x7B - GGUF
2513
+
2514
+ This repo contains GGUF format model files for [GritLM/GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B).
2515
+
2516
+ The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
2517
+
2518
+ <div style="text-align: left; margin: 20px 0;">
2519
+ <a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
2520
+ Run them on the TensorBlock client using your local machine ↗
2521
+ </a>
2522
+ </div>
2523
+
2524
+ ## Prompt template
2525
+
2526
+ ```
2527
+ <s><|user|>
2528
+ {prompt}
2529
+ <|assistant|>
2530
+ ```
2531
+
2532
+ ## Model file specification
2533
+
2534
+ | Filename | Quant type | File Size | Description |
2535
+ | -------- | ---------- | --------- | ----------- |
2536
+ | [GritLM-8x7B-Q2_K.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-GGUF/blob/main/GritLM-8x7B-Q2_K.gguf) | Q2_K | 17.311 GB | smallest, significant quality loss - not recommended for most purposes |
2537
+ | [GritLM-8x7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-GGUF/blob/main/GritLM-8x7B-Q3_K_S.gguf) | Q3_K_S | 20.433 GB | very small, high quality loss |
2538
+ | [GritLM-8x7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-GGUF/blob/main/GritLM-8x7B-Q3_K_M.gguf) | Q3_K_M | 22.546 GB | very small, high quality loss |
2539
+ | [GritLM-8x7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-GGUF/blob/main/GritLM-8x7B-Q3_K_L.gguf) | Q3_K_L | 24.170 GB | small, substantial quality loss |
2540
+ | [GritLM-8x7B-Q4_0.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-GGUF/blob/main/GritLM-8x7B-Q4_0.gguf) | Q4_0 | 26.444 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
2541
+ | [GritLM-8x7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-GGUF/blob/main/GritLM-8x7B-Q4_K_S.gguf) | Q4_K_S | 26.746 GB | small, greater quality loss |
2542
+ | [GritLM-8x7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-GGUF/blob/main/GritLM-8x7B-Q4_K_M.gguf) | Q4_K_M | 28.448 GB | medium, balanced quality - recommended |
2543
+ | [GritLM-8x7B-Q5_0.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-GGUF/blob/main/GritLM-8x7B-Q5_0.gguf) | Q5_0 | 32.231 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
2544
+ | [GritLM-8x7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-GGUF/blob/main/GritLM-8x7B-Q5_K_S.gguf) | Q5_K_S | 32.231 GB | large, low quality loss - recommended |
2545
+ | [GritLM-8x7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-GGUF/blob/main/GritLM-8x7B-Q5_K_M.gguf) | Q5_K_M | 33.230 GB | large, very low quality loss - recommended |
2546
+ | [GritLM-8x7B-Q6_K.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-GGUF/blob/main/GritLM-8x7B-Q6_K.gguf) | Q6_K | 38.381 GB | very large, extremely low quality loss |
2547
+ | [GritLM-8x7B-Q8_0.gguf](https://huggingface.co/tensorblock/GritLM-8x7B-GGUF/blob/main/GritLM-8x7B-Q8_0.gguf) | Q8_0 | 49.626 GB | very large, extremely low quality loss - not recommended |
2548
+
2549
+
2550
+ ## Downloading instruction
2551
+
2552
+ ### Command line
2553
+
2554
+ Firstly, install Huggingface Client
2555
+
2556
+ ```shell
2557
+ pip install -U "huggingface_hub[cli]"
2558
+ ```
2559
+
2560
+ Then, downoad the individual model file the a local directory
2561
+
2562
+ ```shell
2563
+ huggingface-cli download tensorblock/GritLM-8x7B-GGUF --include "GritLM-8x7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR
2564
+ ```
2565
+
2566
+ If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
2567
+
2568
+ ```shell
2569
+ huggingface-cli download tensorblock/GritLM-8x7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
2570
+ ```