--- library_name: transformers base_model: AIRI-Institute/gena-lm-bert-base-t2t tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: gena-lm-bert-base-t2t_ft_BioS2_1kbpHG19_DHSs_H3K27AC_one_shot results: [] --- # gena-lm-bert-base-t2t_ft_BioS2_1kbpHG19_DHSs_H3K27AC_one_shot This model is a fine-tuned version of [AIRI-Institute/gena-lm-bert-base-t2t](https://huggingface.co/AIRI-Institute/gena-lm-bert-base-t2t) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5759 - F1 Score: 0.7500 - Precision: 0.7742 - Recall: 0.7273 - Accuracy: 0.7288 - Auc: 0.7739 - Prc: 0.8342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| | 0.6823 | 8.3333 | 500 | 0.6205 | 0.7879 | 0.7879 | 0.7879 | 0.7627 | 0.7756 | 0.7993 | | 0.5647 | 16.6667 | 1000 | 0.5759 | 0.7500 | 0.7742 | 0.7273 | 0.7288 | 0.7739 | 0.8342 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 2.18.0 - Tokenizers 0.20.0