File size: 96,453 Bytes
c43f41f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 |
import ast
import asyncio
from datetime import datetime
import gc
import importlib
import argparse
import math
import os
import pathlib
import re
import sys
import random
import time
import json
from multiprocessing import Value
from typing import Any, Dict, List, Optional
import accelerate
import numpy as np
from packaging.version import Version
import huggingface_hub
import toml
import torch
from tqdm import tqdm
from accelerate.utils import set_seed
from accelerate import Accelerator, InitProcessGroupKwargs, DistributedDataParallelKwargs
from safetensors.torch import load_file
import transformers
from diffusers.optimization import (
SchedulerType as DiffusersSchedulerType,
TYPE_TO_SCHEDULER_FUNCTION as DIFFUSERS_TYPE_TO_SCHEDULER_FUNCTION,
)
from transformers.optimization import SchedulerType, TYPE_TO_SCHEDULER_FUNCTION
from dataset import config_utils
from hunyuan_model.models import load_transformer, get_rotary_pos_embed_by_shape
import hunyuan_model.text_encoder as text_encoder_module
from hunyuan_model.vae import load_vae
import hunyuan_model.vae as vae_module
from modules.scheduling_flow_match_discrete import FlowMatchDiscreteScheduler
import networks.lora as lora_module
from dataset.config_utils import BlueprintGenerator, ConfigSanitizer
import logging
from utils import huggingface_utils, model_utils, train_utils, sai_model_spec
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
BASE_MODEL_VERSION_HUNYUAN_VIDEO = "hunyuan_video"
SS_METADATA_KEY_BASE_MODEL_VERSION = "ss_base_model_version"
SS_METADATA_KEY_NETWORK_MODULE = "ss_network_module"
SS_METADATA_KEY_NETWORK_DIM = "ss_network_dim"
SS_METADATA_KEY_NETWORK_ALPHA = "ss_network_alpha"
SS_METADATA_KEY_NETWORK_ARGS = "ss_network_args"
SS_METADATA_MINIMUM_KEYS = [
SS_METADATA_KEY_BASE_MODEL_VERSION,
SS_METADATA_KEY_NETWORK_MODULE,
SS_METADATA_KEY_NETWORK_DIM,
SS_METADATA_KEY_NETWORK_ALPHA,
SS_METADATA_KEY_NETWORK_ARGS,
]
def clean_memory_on_device(device: torch.device):
r"""
Clean memory on the specified device, will be called from training scripts.
"""
gc.collect()
# device may "cuda" or "cuda:0", so we need to check the type of device
if device.type == "cuda":
torch.cuda.empty_cache()
if device.type == "xpu":
torch.xpu.empty_cache()
if device.type == "mps":
torch.mps.empty_cache()
# for collate_fn: epoch and step is multiprocessing.Value
class collator_class:
def __init__(self, epoch, step, dataset):
self.current_epoch = epoch
self.current_step = step
self.dataset = dataset # not used if worker_info is not None, in case of multiprocessing
def __call__(self, examples):
worker_info = torch.utils.data.get_worker_info()
# worker_info is None in the main process
if worker_info is not None:
dataset = worker_info.dataset
else:
dataset = self.dataset
# set epoch and step
dataset.set_current_epoch(self.current_epoch.value)
dataset.set_current_step(self.current_step.value)
return examples[0]
def prepare_accelerator(args: argparse.Namespace) -> Accelerator:
"""
DeepSpeed is not supported in this script currently.
"""
if args.logging_dir is None:
logging_dir = None
else:
log_prefix = "" if args.log_prefix is None else args.log_prefix
logging_dir = args.logging_dir + "/" + log_prefix + time.strftime("%Y%m%d%H%M%S", time.localtime())
if args.log_with is None:
if logging_dir is not None:
log_with = "tensorboard"
else:
log_with = None
else:
log_with = args.log_with
if log_with in ["tensorboard", "all"]:
if logging_dir is None:
raise ValueError(
"logging_dir is required when log_with is tensorboard / Tensorboardを使う場合、logging_dirを指定してください"
)
if log_with in ["wandb", "all"]:
try:
import wandb
except ImportError:
raise ImportError("No wandb / wandb がインストールされていないようです")
if logging_dir is not None:
os.makedirs(logging_dir, exist_ok=True)
os.environ["WANDB_DIR"] = logging_dir
if args.wandb_api_key is not None:
wandb.login(key=args.wandb_api_key)
kwargs_handlers = [
(
InitProcessGroupKwargs(
backend="gloo" if os.name == "nt" or not torch.cuda.is_available() else "nccl",
init_method=(
"env://?use_libuv=False" if os.name == "nt" and Version(torch.__version__) >= Version("2.4.0") else None
),
timeout=datetime.timedelta(minutes=args.ddp_timeout) if args.ddp_timeout else None,
)
if torch.cuda.device_count() > 1
else None
),
(
DistributedDataParallelKwargs(
gradient_as_bucket_view=args.ddp_gradient_as_bucket_view, static_graph=args.ddp_static_graph
)
if args.ddp_gradient_as_bucket_view or args.ddp_static_graph
else None
),
]
kwargs_handlers = [i for i in kwargs_handlers if i is not None]
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=log_with,
project_dir=logging_dir,
kwargs_handlers=kwargs_handlers,
)
print("accelerator device:", accelerator.device)
return accelerator
def line_to_prompt_dict(line: str) -> dict:
# subset of gen_img_diffusers
prompt_args = line.split(" --")
prompt_dict = {}
prompt_dict["prompt"] = prompt_args[0]
for parg in prompt_args:
try:
m = re.match(r"w (\d+)", parg, re.IGNORECASE)
if m:
prompt_dict["width"] = int(m.group(1))
continue
m = re.match(r"h (\d+)", parg, re.IGNORECASE)
if m:
prompt_dict["height"] = int(m.group(1))
continue
m = re.match(r"f (\d+)", parg, re.IGNORECASE)
if m:
prompt_dict["frame_count"] = int(m.group(1))
continue
m = re.match(r"d (\d+)", parg, re.IGNORECASE)
if m:
prompt_dict["seed"] = int(m.group(1))
continue
m = re.match(r"s (\d+)", parg, re.IGNORECASE)
if m: # steps
prompt_dict["sample_steps"] = max(1, min(1000, int(m.group(1))))
continue
# m = re.match(r"l ([\d\.]+)", parg, re.IGNORECASE)
# if m: # scale
# prompt_dict["scale"] = float(m.group(1))
# continue
# m = re.match(r"n (.+)", parg, re.IGNORECASE)
# if m: # negative prompt
# prompt_dict["negative_prompt"] = m.group(1)
# continue
except ValueError as ex:
logger.error(f"Exception in parsing / 解析エラー: {parg}")
logger.error(ex)
return prompt_dict
def load_prompts(prompt_file: str) -> list[Dict]:
# read prompts
if prompt_file.endswith(".txt"):
with open(prompt_file, "r", encoding="utf-8") as f:
lines = f.readlines()
prompts = [line.strip() for line in lines if len(line.strip()) > 0 and line[0] != "#"]
elif prompt_file.endswith(".toml"):
with open(prompt_file, "r", encoding="utf-8") as f:
data = toml.load(f)
prompts = [dict(**data["prompt"], **subset) for subset in data["prompt"]["subset"]]
elif prompt_file.endswith(".json"):
with open(prompt_file, "r", encoding="utf-8") as f:
prompts = json.load(f)
# preprocess prompts
for i in range(len(prompts)):
prompt_dict = prompts[i]
if isinstance(prompt_dict, str):
prompt_dict = line_to_prompt_dict(prompt_dict)
prompts[i] = prompt_dict
assert isinstance(prompt_dict, dict)
# Adds an enumerator to the dict based on prompt position. Used later to name image files. Also cleanup of extra data in original prompt dict.
prompt_dict["enum"] = i
prompt_dict.pop("subset", None)
return prompts
def compute_density_for_timestep_sampling(
weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None
):
"""Compute the density for sampling the timesteps when doing SD3 training.
Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.
SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
"""
if weighting_scheme == "logit_normal":
# See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu")
u = torch.nn.functional.sigmoid(u)
elif weighting_scheme == "mode":
u = torch.rand(size=(batch_size,), device="cpu")
u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
else:
u = torch.rand(size=(batch_size,), device="cpu")
return u
def get_sigmas(noise_scheduler, timesteps, device, n_dim=4, dtype=torch.float32):
sigmas = noise_scheduler.sigmas.to(device=device, dtype=dtype)
schedule_timesteps = noise_scheduler.timesteps.to(device)
timesteps = timesteps.to(device)
# if sum([(schedule_timesteps == t) for t in timesteps]) < len(timesteps):
if any([(schedule_timesteps == t).sum() == 0 for t in timesteps]):
# raise ValueError("Some timesteps are not in the schedule / 一部のtimestepsがスケジュールに含まれていません")
# round to nearest timestep
logger.warning("Some timesteps are not in the schedule / 一部のtimestepsがスケジュールに含まれていません")
step_indices = [torch.argmin(torch.abs(schedule_timesteps - t)).item() for t in timesteps]
else:
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
def compute_loss_weighting_for_sd3(weighting_scheme: str, noise_scheduler, timesteps, device, dtype):
"""Computes loss weighting scheme for SD3 training.
Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.
SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
"""
if weighting_scheme == "sigma_sqrt" or weighting_scheme == "cosmap":
sigmas = get_sigmas(noise_scheduler, timesteps, device, n_dim=5, dtype=dtype)
if weighting_scheme == "sigma_sqrt":
weighting = (sigmas**-2.0).float()
else:
bot = 1 - 2 * sigmas + 2 * sigmas**2
weighting = 2 / (math.pi * bot)
else:
weighting = None # torch.ones_like(sigmas)
return weighting
class NetworkTrainer:
def __init__(self):
pass
# TODO 他のスクリプトと共通化する
def generate_step_logs(
self,
args: argparse.Namespace,
current_loss,
avr_loss,
lr_scheduler,
lr_descriptions,
optimizer=None,
keys_scaled=None,
mean_norm=None,
maximum_norm=None,
):
network_train_unet_only = True
logs = {"loss/current": current_loss, "loss/average": avr_loss}
if keys_scaled is not None:
logs["max_norm/keys_scaled"] = keys_scaled
logs["max_norm/average_key_norm"] = mean_norm
logs["max_norm/max_key_norm"] = maximum_norm
lrs = lr_scheduler.get_last_lr()
for i, lr in enumerate(lrs):
if lr_descriptions is not None:
lr_desc = lr_descriptions[i]
else:
idx = i - (0 if network_train_unet_only else -1)
if idx == -1:
lr_desc = "textencoder"
else:
if len(lrs) > 2:
lr_desc = f"group{idx}"
else:
lr_desc = "unet"
logs[f"lr/{lr_desc}"] = lr
if args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower():
# tracking d*lr value
logs[f"lr/d*lr/{lr_desc}"] = (
lr_scheduler.optimizers[-1].param_groups[i]["d"] * lr_scheduler.optimizers[-1].param_groups[i]["lr"]
)
if (
args.optimizer_type.lower().endswith("ProdigyPlusScheduleFree".lower()) and optimizer is not None
): # tracking d*lr value of unet.
logs["lr/d*lr"] = optimizer.param_groups[0]["d"] * optimizer.param_groups[0]["lr"]
else:
idx = 0
if not network_train_unet_only:
logs["lr/textencoder"] = float(lrs[0])
idx = 1
for i in range(idx, len(lrs)):
logs[f"lr/group{i}"] = float(lrs[i])
if args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower():
logs[f"lr/d*lr/group{i}"] = (
lr_scheduler.optimizers[-1].param_groups[i]["d"] * lr_scheduler.optimizers[-1].param_groups[i]["lr"]
)
if args.optimizer_type.lower().endswith("ProdigyPlusScheduleFree".lower()) and optimizer is not None:
logs[f"lr/d*lr/group{i}"] = optimizer.param_groups[i]["d"] * optimizer.param_groups[i]["lr"]
return logs
def process_sample_prompts(
self,
args: argparse.Namespace,
accelerator: Accelerator,
sample_prompts: str,
text_encoder1: str,
text_encoder2: str,
fp8_llm: bool,
):
logger.info(f"cache Text Encoder outputs for sample prompt: {sample_prompts}")
prompts = load_prompts(sample_prompts)
def encode_for_text_encoder(text_encoder):
sample_prompts_te_outputs = {} # (prompt) -> (embeds, mask)
with accelerator.autocast(), torch.no_grad():
for prompt_dict in prompts:
for p in [prompt_dict.get("prompt", "")]:
if p not in sample_prompts_te_outputs:
logger.info(f"cache Text Encoder outputs for prompt: {p}")
data_type = "video"
text_inputs = text_encoder.text2tokens(p, data_type=data_type)
prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type)
sample_prompts_te_outputs[p] = (prompt_outputs.hidden_state, prompt_outputs.attention_mask)
return sample_prompts_te_outputs
# Load Text Encoder 1 and encode
text_encoder_dtype = torch.float16 if args.text_encoder_dtype is None else model_utils.str_to_dtype(args.text_encoder_dtype)
logger.info(f"loading text encoder 1: {text_encoder1}")
text_encoder_1 = text_encoder_module.load_text_encoder_1(text_encoder1, accelerator.device, fp8_llm, text_encoder_dtype)
logger.info("encoding with Text Encoder 1")
te_outputs_1 = encode_for_text_encoder(text_encoder_1)
del text_encoder_1
# Load Text Encoder 2 and encode
logger.info(f"loading text encoder 2: {text_encoder2}")
text_encoder_2 = text_encoder_module.load_text_encoder_2(text_encoder2, accelerator.device, text_encoder_dtype)
logger.info("encoding with Text Encoder 2")
te_outputs_2 = encode_for_text_encoder(text_encoder_2, is_llm=False)
del text_encoder_2
# prepare sample parameters
sample_parameters = []
for prompt_dict in prompts:
prompt_dict_copy = prompt_dict.copy()
p = prompt_dict.get("prompt", "")
prompt_dict_copy["llm_embeds"] = te_outputs_1[p][0]
prompt_dict_copy["llm_mask"] = te_outputs_1[p][1]
prompt_dict_copy["clipL_embeds"] = te_outputs_2[p][0]
prompt_dict_copy["clipL_mask"] = te_outputs_2[p][1]
sample_parameters.append(prompt_dict_copy)
clean_memory_on_device(accelerator.device)
return sample_parameters
def get_optimizer(self, args, trainable_params: list[torch.nn.Parameter]) -> tuple[str, str, torch.optim.Optimizer]:
# adamw, adamw8bit, adafactor
optimizer_type = args.optimizer_type
# split optimizer_type and optimizer_args
optimizer_kwargs = {}
if args.optimizer_args is not None and len(args.optimizer_args) > 0:
for arg in args.optimizer_args:
key, value = arg.split("=")
value = ast.literal_eval(value)
optimizer_kwargs[key] = value
lr = args.learning_rate
optimizer = None
optimizer_class = None
if optimizer_type.endswith("8bit".lower()):
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError("No bitsandbytes / bitsandbytesがインストールされていないようです")
if optimizer_type == "AdamW8bit".lower():
logger.info(f"use 8-bit AdamW optimizer | {optimizer_kwargs}")
optimizer_class = bnb.optim.AdamW8bit
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
elif optimizer_type == "Adafactor".lower():
# Adafactor: check relative_step and warmup_init
if "relative_step" not in optimizer_kwargs:
optimizer_kwargs["relative_step"] = True # default
if not optimizer_kwargs["relative_step"] and optimizer_kwargs.get("warmup_init", False):
logger.info(
f"set relative_step to True because warmup_init is True / warmup_initがTrueのためrelative_stepをTrueにします"
)
optimizer_kwargs["relative_step"] = True
logger.info(f"use Adafactor optimizer | {optimizer_kwargs}")
if optimizer_kwargs["relative_step"]:
logger.info(f"relative_step is true / relative_stepがtrueです")
if lr != 0.0:
logger.warning(f"learning rate is used as initial_lr / 指定したlearning rateはinitial_lrとして使用されます")
args.learning_rate = None
if args.lr_scheduler != "adafactor":
logger.info(f"use adafactor_scheduler / スケジューラにadafactor_schedulerを使用します")
args.lr_scheduler = f"adafactor:{lr}" # ちょっと微妙だけど
lr = None
else:
if args.max_grad_norm != 0.0:
logger.warning(
f"because max_grad_norm is set, clip_grad_norm is enabled. consider set to 0 / max_grad_normが設定されているためclip_grad_normが有効になります。0に設定して無効にしたほうがいいかもしれません"
)
if args.lr_scheduler != "constant_with_warmup":
logger.warning(f"constant_with_warmup will be good / スケジューラはconstant_with_warmupが良いかもしれません")
if optimizer_kwargs.get("clip_threshold", 1.0) != 1.0:
logger.warning(f"clip_threshold=1.0 will be good / clip_thresholdは1.0が良いかもしれません")
optimizer_class = transformers.optimization.Adafactor
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
elif optimizer_type == "AdamW".lower():
logger.info(f"use AdamW optimizer | {optimizer_kwargs}")
optimizer_class = torch.optim.AdamW
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
if optimizer is None:
# 任意のoptimizerを使う
case_sensitive_optimizer_type = args.optimizer_type # not lower
logger.info(f"use {case_sensitive_optimizer_type} | {optimizer_kwargs}")
if "." not in case_sensitive_optimizer_type: # from torch.optim
optimizer_module = torch.optim
else: # from other library
values = case_sensitive_optimizer_type.split(".")
optimizer_module = importlib.import_module(".".join(values[:-1]))
case_sensitive_optimizer_type = values[-1]
optimizer_class = getattr(optimizer_module, case_sensitive_optimizer_type)
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
# for logging
optimizer_name = optimizer_class.__module__ + "." + optimizer_class.__name__
optimizer_args = ",".join([f"{k}={v}" for k, v in optimizer_kwargs.items()])
# get train and eval functions
if hasattr(optimizer, "train") and callable(optimizer.train):
train_fn = optimizer.train
eval_fn = optimizer.eval
else:
train_fn = lambda: None
eval_fn = lambda: None
return optimizer_name, optimizer_args, optimizer, train_fn, eval_fn
def is_schedulefree_optimizer(self, optimizer: torch.optim.Optimizer, args: argparse.Namespace) -> bool:
return args.optimizer_type.lower().endswith("schedulefree".lower()) # or args.optimizer_schedulefree_wrapper
def get_dummy_scheduler(optimizer: torch.optim.Optimizer) -> Any:
# dummy scheduler for schedulefree optimizer. supports only empty step(), get_last_lr() and optimizers.
# this scheduler is used for logging only.
# this isn't be wrapped by accelerator because of this class is not a subclass of torch.optim.lr_scheduler._LRScheduler
class DummyScheduler:
def __init__(self, optimizer: torch.optim.Optimizer):
self.optimizer = optimizer
def step(self):
pass
def get_last_lr(self):
return [group["lr"] for group in self.optimizer.param_groups]
return DummyScheduler(optimizer)
def get_scheduler(self, args, optimizer: torch.optim.Optimizer, num_processes: int):
"""
Unified API to get any scheduler from its name.
"""
# if schedulefree optimizer, return dummy scheduler
if self.is_schedulefree_optimizer(optimizer, args):
return self.get_dummy_scheduler(optimizer)
name = args.lr_scheduler
num_training_steps = args.max_train_steps * num_processes # * args.gradient_accumulation_steps
num_warmup_steps: Optional[int] = (
int(args.lr_warmup_steps * num_training_steps) if isinstance(args.lr_warmup_steps, float) else args.lr_warmup_steps
)
num_decay_steps: Optional[int] = (
int(args.lr_decay_steps * num_training_steps) if isinstance(args.lr_decay_steps, float) else args.lr_decay_steps
)
num_stable_steps = num_training_steps - num_warmup_steps - num_decay_steps
num_cycles = args.lr_scheduler_num_cycles
power = args.lr_scheduler_power
timescale = args.lr_scheduler_timescale
min_lr_ratio = args.lr_scheduler_min_lr_ratio
lr_scheduler_kwargs = {} # get custom lr_scheduler kwargs
if args.lr_scheduler_args is not None and len(args.lr_scheduler_args) > 0:
for arg in args.lr_scheduler_args:
key, value = arg.split("=")
value = ast.literal_eval(value)
lr_scheduler_kwargs[key] = value
def wrap_check_needless_num_warmup_steps(return_vals):
if num_warmup_steps is not None and num_warmup_steps != 0:
raise ValueError(f"{name} does not require `num_warmup_steps`. Set None or 0.")
return return_vals
# using any lr_scheduler from other library
if args.lr_scheduler_type:
lr_scheduler_type = args.lr_scheduler_type
logger.info(f"use {lr_scheduler_type} | {lr_scheduler_kwargs} as lr_scheduler")
if "." not in lr_scheduler_type: # default to use torch.optim
lr_scheduler_module = torch.optim.lr_scheduler
else:
values = lr_scheduler_type.split(".")
lr_scheduler_module = importlib.import_module(".".join(values[:-1]))
lr_scheduler_type = values[-1]
lr_scheduler_class = getattr(lr_scheduler_module, lr_scheduler_type)
lr_scheduler = lr_scheduler_class(optimizer, **lr_scheduler_kwargs)
return lr_scheduler
if name.startswith("adafactor"):
assert (
type(optimizer) == transformers.optimization.Adafactor
), f"adafactor scheduler must be used with Adafactor optimizer / adafactor schedulerはAdafactorオプティマイザと同時に使ってください"
initial_lr = float(name.split(":")[1])
# logger.info(f"adafactor scheduler init lr {initial_lr}")
return wrap_check_needless_num_warmup_steps(transformers.optimization.AdafactorSchedule(optimizer, initial_lr))
if name == DiffusersSchedulerType.PIECEWISE_CONSTANT.value:
name = DiffusersSchedulerType(name)
schedule_func = DIFFUSERS_TYPE_TO_SCHEDULER_FUNCTION[name]
return schedule_func(optimizer, **lr_scheduler_kwargs) # step_rules and last_epoch are given as kwargs
name = SchedulerType(name)
schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return wrap_check_needless_num_warmup_steps(schedule_func(optimizer, **lr_scheduler_kwargs))
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.")
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, **lr_scheduler_kwargs)
if name == SchedulerType.INVERSE_SQRT:
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, timescale=timescale, **lr_scheduler_kwargs)
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.")
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_cycles=num_cycles,
**lr_scheduler_kwargs,
)
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
power=power,
**lr_scheduler_kwargs,
)
if name == SchedulerType.COSINE_WITH_MIN_LR:
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_cycles=num_cycles / 2,
min_lr_rate=min_lr_ratio,
**lr_scheduler_kwargs,
)
# these schedulers do not require `num_decay_steps`
if name == SchedulerType.LINEAR or name == SchedulerType.COSINE:
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
**lr_scheduler_kwargs,
)
# All other schedulers require `num_decay_steps`
if num_decay_steps is None:
raise ValueError(f"{name} requires `num_decay_steps`, please provide that argument.")
if name == SchedulerType.WARMUP_STABLE_DECAY:
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_stable_steps=num_stable_steps,
num_decay_steps=num_decay_steps,
num_cycles=num_cycles / 2,
min_lr_ratio=min_lr_ratio if min_lr_ratio is not None else 0.0,
**lr_scheduler_kwargs,
)
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_decay_steps=num_decay_steps,
**lr_scheduler_kwargs,
)
def resume_from_local_or_hf_if_specified(self, accelerator: Accelerator, args: argparse.Namespace) -> bool:
if not args.resume:
return False
if not args.resume_from_huggingface:
logger.info(f"resume training from local state: {args.resume}")
accelerator.load_state(args.resume)
return True
logger.info(f"resume training from huggingface state: {args.resume}")
repo_id = args.resume.split("/")[0] + "/" + args.resume.split("/")[1]
path_in_repo = "/".join(args.resume.split("/")[2:])
revision = None
repo_type = None
if ":" in path_in_repo:
divided = path_in_repo.split(":")
if len(divided) == 2:
path_in_repo, revision = divided
repo_type = "model"
else:
path_in_repo, revision, repo_type = divided
logger.info(f"Downloading state from huggingface: {repo_id}/{path_in_repo}@{revision}")
list_files = huggingface_utils.list_dir(
repo_id=repo_id,
subfolder=path_in_repo,
revision=revision,
token=args.huggingface_token,
repo_type=repo_type,
)
async def download(filename) -> str:
def task():
return huggingface_hub.hf_hub_download(
repo_id=repo_id,
filename=filename,
revision=revision,
repo_type=repo_type,
token=args.huggingface_token,
)
return await asyncio.get_event_loop().run_in_executor(None, task)
loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*[download(filename=filename.rfilename) for filename in list_files]))
if len(results) == 0:
raise ValueError(
"No files found in the specified repo id/path/revision / 指定されたリポジトリID/パス/リビジョンにファイルが見つかりませんでした"
)
dirname = os.path.dirname(results[0])
accelerator.load_state(dirname)
return True
def sample_images(self, accelerator, args, epoch, global_step, device, vae, transformer, sample_parameters):
pass
def get_noisy_model_input_and_timesteps(
self,
args: argparse.Namespace,
noise: torch.Tensor,
latents: torch.Tensor,
noise_scheduler: FlowMatchDiscreteScheduler,
device: torch.device,
dtype: torch.dtype,
):
batch_size = noise.shape[0]
if args.timestep_sampling == "uniform" or args.timestep_sampling == "sigmoid" or args.timestep_sampling == "shift":
if args.timestep_sampling == "uniform" or args.timestep_sampling == "sigmoid":
# Simple random t-based noise sampling
if args.timestep_sampling == "sigmoid":
t = torch.sigmoid(args.sigmoid_scale * torch.randn((batch_size,), device=device))
else:
t = torch.rand((batch_size,), device=device)
elif args.timestep_sampling == "shift":
shift = args.discrete_flow_shift
logits_norm = torch.randn(batch_size, device=device)
logits_norm = logits_norm * args.sigmoid_scale # larger scale for more uniform sampling
t = logits_norm.sigmoid()
t = (t * shift) / (1 + (shift - 1) * t)
t_min = args.min_timestep if args.min_timestep is not None else 0
t_max = args.max_timestep if args.max_timestep is not None else 1000.0
t_min /= 1000.0
t_max /= 1000.0
t = t * (t_max - t_min) + t_min # scale to [t_min, t_max], default [0, 1]
timesteps = t * 1000.0
t = t.view(-1, 1, 1, 1, 1)
noisy_model_input = (1 - t) * latents + t * noise
timesteps += 1 # 1 to 1000
else:
# Sample a random timestep for each image
# for weighting schemes where we sample timesteps non-uniformly
u = compute_density_for_timestep_sampling(
weighting_scheme=args.weighting_scheme,
batch_size=batch_size,
logit_mean=args.logit_mean,
logit_std=args.logit_std,
mode_scale=args.mode_scale,
)
# indices = (u * noise_scheduler.config.num_train_timesteps).long()
t_min = args.min_timestep if args.min_timestep is not None else 0
t_max = args.max_timestep if args.max_timestep is not None else 1000
indices = (u * (t_max - t_min) + t_min).long()
timesteps = noise_scheduler.timesteps[indices].to(device=device) # 1 to 1000
# Add noise according to flow matching.
sigmas = get_sigmas(noise_scheduler, timesteps, device, n_dim=latents.ndim, dtype=dtype)
noisy_model_input = sigmas * noise + (1.0 - sigmas) * latents
return noisy_model_input, timesteps
def show_timesteps(self, args: argparse.Namespace):
N_TRY = 100000
BATCH_SIZE = 1000
CONSOLE_WIDTH = 64
N_TIMESTEPS_PER_LINE = 25
noise_scheduler = FlowMatchDiscreteScheduler(shift=args.discrete_flow_shift, reverse=True, solver="euler")
# print(f"Noise scheduler timesteps: {noise_scheduler.timesteps}")
latents = torch.zeros(BATCH_SIZE, 1, 1, 1, 1, dtype=torch.float16)
noise = torch.ones_like(latents)
# sample timesteps
sampled_timesteps = [0] * noise_scheduler.config.num_train_timesteps
for i in tqdm(range(N_TRY // BATCH_SIZE)):
# we use noise=1, so retured noisy_model_input is same as timestep, because `noisy_model_input = (1 - t) * latents + t * noise`
actual_timesteps, _ = self.get_noisy_model_input_and_timesteps(
args, noise, latents, noise_scheduler, "cpu", torch.float16
)
actual_timesteps = actual_timesteps[:, 0, 0, 0, 0] * 1000
for t in actual_timesteps:
t = int(t.item())
sampled_timesteps[t] += 1
# sample weighting
sampled_weighting = [0] * noise_scheduler.config.num_train_timesteps
for i in tqdm(range(len(sampled_weighting))):
timesteps = torch.tensor([i + 1], device="cpu")
weighting = compute_loss_weighting_for_sd3(args.weighting_scheme, noise_scheduler, timesteps, "cpu", torch.float16)
if weighting is None:
weighting = torch.tensor(1.0, device="cpu")
elif torch.isinf(weighting).any():
weighting = torch.tensor(1.0, device="cpu")
sampled_weighting[i] = weighting.item()
# show results
if args.show_timesteps == "image":
# show timesteps with matplotlib
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.bar(range(len(sampled_timesteps)), sampled_timesteps, width=1.0)
plt.title("Sampled timesteps")
plt.xlabel("Timestep")
plt.ylabel("Count")
plt.subplot(1, 2, 2)
plt.bar(range(len(sampled_weighting)), sampled_weighting, width=1.0)
plt.title("Sampled loss weighting")
plt.xlabel("Timestep")
plt.ylabel("Weighting")
plt.tight_layout()
plt.show()
else:
sampled_timesteps = np.array(sampled_timesteps)
sampled_weighting = np.array(sampled_weighting)
# average per line
sampled_timesteps = sampled_timesteps.reshape(-1, N_TIMESTEPS_PER_LINE).mean(axis=1)
sampled_weighting = sampled_weighting.reshape(-1, N_TIMESTEPS_PER_LINE).mean(axis=1)
max_count = max(sampled_timesteps)
print(f"Sampled timesteps: max count={max_count}")
for i, t in enumerate(sampled_timesteps):
line = f"{(i)*N_TIMESTEPS_PER_LINE:4d}-{(i+1)*N_TIMESTEPS_PER_LINE-1:4d}: "
line += "#" * int(t / max_count * CONSOLE_WIDTH)
print(line)
max_weighting = max(sampled_weighting)
print(f"Sampled loss weighting: max weighting={max_weighting}")
for i, w in enumerate(sampled_weighting):
line = f"{i*N_TIMESTEPS_PER_LINE:4d}-{(i+1)*N_TIMESTEPS_PER_LINE-1:4d}: {w:8.2f} "
line += "#" * int(w / max_weighting * CONSOLE_WIDTH)
print(line)
def train(self, args):
# show timesteps for debugging
if args.show_timesteps:
self.show_timesteps(args)
return
session_id = random.randint(0, 2**32)
training_started_at = time.time()
# setup_logging(args, reset=True)
if args.seed is None:
args.seed = random.randint(0, 2**32)
set_seed(args.seed)
# Load dataset config
blueprint_generator = BlueprintGenerator(ConfigSanitizer())
logger.info(f"Load dataset config from {args.dataset_config}")
user_config = config_utils.load_user_config(args.dataset_config)
blueprint = blueprint_generator.generate(user_config, args)
train_dataset_group = config_utils.generate_dataset_group_by_blueprint(blueprint.dataset_group, training=True)
current_epoch = Value("i", 0)
current_step = Value("i", 0)
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
collator = collator_class(current_epoch, current_step, ds_for_collator)
# prepare accelerator
logger.info("preparing accelerator")
accelerator = prepare_accelerator(args)
is_main_process = accelerator.is_main_process
# prepare dtype
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# HunyuanVideo specific
dit_dtype = torch.bfloat16 if args.dit_dtype is None else model_utils.str_to_dtype(args.dit_dtype)
dit_weight_dtype = torch.float8_e4m3fn if args.fp8_base else dit_dtype
logger.info(f"DiT precision: {dit_dtype}, weight precision: {dit_weight_dtype}")
vae_dtype = torch.float16 if args.vae_dtype is None else model_utils.str_to_dtype(args.vae_dtype)
# get embedding for sampling images
sample_parameters = vae = None
if args.sample_prompts:
sample_parameters = self.process_sample_prompts(
args, accelerator, args.sample_prompts, args.text_encoder1, args.text_encoder2, args.fp8_llm
)
# Load VAE model for sampling images: VAE is loaded to cpu to save gpu memory
vae, _, s_ratio, t_ratio = load_vae(vae_dtype=vae_dtype, device="cpu", vae_path=args.vae)
vae.requires_grad_(False)
vae.eval()
if args.vae_chunk_size is not None:
vae.set_chunk_size_for_causal_conv_3d(args.vae_chunk_size)
logger.info(f"Set chunk_size to {args.vae_chunk_size} for CausalConv3d in VAE")
if args.vae_spatial_tile_sample_min_size is not None:
vae.enable_spatial_tiling(True)
vae.tile_sample_min_size = args.vae_spatial_tile_sample_min_size
vae.tile_latent_min_size = args.vae_spatial_tile_sample_min_size // 8
elif args.vae_tiling:
vae.enable_spatial_tiling(True)
# load DiT model
blocks_to_swap = args.blocks_to_swap if args.blocks_to_swap else 0
loading_device = "cpu" if blocks_to_swap > 0 else accelerator.device
logger.info(f"Loading DiT model from {args.dit}")
if args.sdpa:
attn_mode = "torch"
elif args.flash_attn:
attn_mode = "flash"
elif args.sage_attn:
attn_mode = "sageattn"
else:
raise ValueError(
f"either --sdpa or --flash-attn or --sage-attn must be specified / --sdpaか--flash-attnか--sage-attnのいずれかを指定してください"
)
transformer = load_transformer(args.dit, attn_mode, loading_device, dit_weight_dtype)
transformer.eval()
transformer.requires_grad_(False)
if blocks_to_swap > 0:
logger.info(f"enable swap {blocks_to_swap} blocks to CPU from device: {accelerator.device}")
transformer.enable_block_swap(blocks_to_swap, accelerator.device, supports_backward=True)
transformer.move_to_device_except_swap_blocks(accelerator.device)
if args.img_in_txt_in_offloading:
logger.info("Enable offloading img_in and txt_in to CPU")
transformer.enable_img_in_txt_in_offloading()
# load network model for differential training
sys.path.append(os.path.dirname(__file__))
accelerator.print("import network module:", args.network_module)
network_module: lora_module = importlib.import_module(args.network_module) # actual module may be different
if args.base_weights is not None:
# if base_weights is specified, merge the weights to DiT model
for i, weight_path in enumerate(args.base_weights):
if args.base_weights_multiplier is None or len(args.base_weights_multiplier) <= i:
multiplier = 1.0
else:
multiplier = args.base_weights_multiplier[i]
accelerator.print(f"merging module: {weight_path} with multiplier {multiplier}")
weights_sd = load_file(weight_path)
module = network_module.create_network_from_weights_hunyuan_video(multiplier, weights_sd, unet=transformer)
module.merge_to(None, transformer, weights_sd, weight_dtype, "cpu")
accelerator.print(f"all weights merged: {', '.join(args.base_weights)}")
# prepare network
net_kwargs = {}
if args.network_args is not None:
for net_arg in args.network_args:
key, value = net_arg.split("=")
net_kwargs[key] = value
if args.dim_from_weights:
logger.info(f"Loading network from weights: {args.dim_from_weights}")
weights_sd = load_file(args.dim_from_weights)
network, _ = network_module.create_network_from_weights_hunyuan_video(1, weights_sd, unet=transformer)
else:
network = network_module.create_network_hunyuan_video(
1.0,
args.network_dim,
args.network_alpha,
vae,
None,
transformer,
neuron_dropout=args.network_dropout,
**net_kwargs,
)
if network is None:
return
network.prepare_network(args)
# apply network to DiT
network.apply_to(None, transformer, apply_text_encoder=False, apply_unet=True)
if args.network_weights is not None:
# FIXME consider alpha of weights: this assumes that the alpha is not changed
info = network.load_weights(args.network_weights)
accelerator.print(f"load network weights from {args.network_weights}: {info}")
if args.gradient_checkpointing:
transformer.enable_gradient_checkpointing()
network.enable_gradient_checkpointing() # may have no effect
# prepare optimizer, data loader etc.
accelerator.print("prepare optimizer, data loader etc.")
trainable_params, lr_descriptions = network.prepare_optimizer_params(unet_lr=args.learning_rate)
optimizer_name, optimizer_args, optimizer, optimizer_train_fn, optimizer_eval_fn = self.get_optimizer(
args, trainable_params
)
# prepare dataloader
# num workers for data loader: if 0, persistent_workers is not available
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers
train_dataloader = torch.utils.data.DataLoader(
train_dataset_group,
batch_size=1,
shuffle=True,
collate_fn=collator,
num_workers=n_workers,
persistent_workers=args.persistent_data_loader_workers,
)
# calculate max_train_steps
if args.max_train_epochs is not None:
args.max_train_steps = args.max_train_epochs * math.ceil(
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
)
accelerator.print(
f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}"
)
# send max_train_steps to train_dataset_group
train_dataset_group.set_max_train_steps(args.max_train_steps)
# prepare lr_scheduler
lr_scheduler = self.get_scheduler(args, optimizer, accelerator.num_processes)
# prepare training model. accelerator does some magic here
# experimental feature: train the model with gradients in fp16/bf16
network_dtype = torch.float32
args.full_fp16 = args.full_bf16 = False # temporary disabled because stochastic rounding is not supported yet
if args.full_fp16:
assert (
args.mixed_precision == "fp16"
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
accelerator.print("enable full fp16 training.")
network_dtype = weight_dtype
network.to(network_dtype)
elif args.full_bf16:
assert (
args.mixed_precision == "bf16"
), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。"
accelerator.print("enable full bf16 training.")
network_dtype = weight_dtype
network.to(network_dtype)
if dit_weight_dtype != dit_dtype:
logger.info(f"casting model to {dit_weight_dtype}")
transformer.to(dit_weight_dtype)
if blocks_to_swap > 0:
transformer = accelerator.prepare(transformer, device_placement=[not blocks_to_swap > 0])
accelerator.unwrap_model(transformer).move_to_device_except_swap_blocks(accelerator.device) # reduce peak memory usage
accelerator.unwrap_model(transformer).prepare_block_swap_before_forward()
else:
transformer = accelerator.prepare(transformer)
network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(network, optimizer, train_dataloader, lr_scheduler)
training_model = network
if args.gradient_checkpointing:
transformer.train()
else:
transformer.eval()
accelerator.unwrap_model(network).prepare_grad_etc(transformer)
if args.full_fp16:
# patch accelerator for fp16 training
# def patch_accelerator_for_fp16_training(accelerator):
org_unscale_grads = accelerator.scaler._unscale_grads_
def _unscale_grads_replacer(optimizer, inv_scale, found_inf, allow_fp16):
return org_unscale_grads(optimizer, inv_scale, found_inf, True)
accelerator.scaler._unscale_grads_ = _unscale_grads_replacer
# before resuming make hook for saving/loading to save/load the network weights only
def save_model_hook(models, weights, output_dir):
# pop weights of other models than network to save only network weights
# only main process or deepspeed https://github.com/huggingface/diffusers/issues/2606
if accelerator.is_main_process: # or args.deepspeed:
remove_indices = []
for i, model in enumerate(models):
if not isinstance(model, type(accelerator.unwrap_model(network))):
remove_indices.append(i)
for i in reversed(remove_indices):
if len(weights) > i:
weights.pop(i)
# print(f"save model hook: {len(weights)} weights will be saved")
def load_model_hook(models, input_dir):
# remove models except network
remove_indices = []
for i, model in enumerate(models):
if not isinstance(model, type(accelerator.unwrap_model(network))):
remove_indices.append(i)
for i in reversed(remove_indices):
models.pop(i)
# print(f"load model hook: {len(models)} models will be loaded")
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
# resume from local or huggingface. accelerator.step is set
self.resume_from_local_or_hf_if_specified(accelerator, args) # accelerator.load_state(args.resume)
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# 学習する
# total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
accelerator.print("running training / 学習開始")
accelerator.print(f" num train items / 学習画像、動画数: {train_dataset_group.num_train_items}")
accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
accelerator.print(f" num epochs / epoch数: {num_train_epochs}")
accelerator.print(
f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}"
)
# accelerator.print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
# TODO refactor metadata creation and move to util
metadata = {
"ss_" "ss_session_id": session_id, # random integer indicating which group of epochs the model came from
"ss_training_started_at": training_started_at, # unix timestamp
"ss_output_name": args.output_name,
"ss_learning_rate": args.learning_rate,
"ss_num_train_items": train_dataset_group.num_train_items,
"ss_num_batches_per_epoch": len(train_dataloader),
"ss_num_epochs": num_train_epochs,
"ss_gradient_checkpointing": args.gradient_checkpointing,
"ss_gradient_accumulation_steps": args.gradient_accumulation_steps,
"ss_max_train_steps": args.max_train_steps,
"ss_lr_warmup_steps": args.lr_warmup_steps,
"ss_lr_scheduler": args.lr_scheduler,
SS_METADATA_KEY_BASE_MODEL_VERSION: BASE_MODEL_VERSION_HUNYUAN_VIDEO,
# "ss_network_module": args.network_module,
# "ss_network_dim": args.network_dim, # None means default because another network than LoRA may have another default dim
# "ss_network_alpha": args.network_alpha, # some networks may not have alpha
SS_METADATA_KEY_NETWORK_MODULE: args.network_module,
SS_METADATA_KEY_NETWORK_DIM: args.network_dim,
SS_METADATA_KEY_NETWORK_ALPHA: args.network_alpha,
"ss_network_dropout": args.network_dropout, # some networks may not have dropout
"ss_mixed_precision": args.mixed_precision,
"ss_seed": args.seed,
"ss_training_comment": args.training_comment, # will not be updated after training
# "ss_sd_scripts_commit_hash": train_util.get_git_revision_hash(),
"ss_optimizer": optimizer_name + (f"({optimizer_args})" if len(optimizer_args) > 0 else ""),
"ss_max_grad_norm": args.max_grad_norm,
"ss_fp8_base": bool(args.fp8_base),
"ss_fp8_llm": bool(args.fp8_llm),
"ss_full_fp16": bool(args.full_fp16),
"ss_full_bf16": bool(args.full_bf16),
"ss_weighting_scheme": args.weighting_scheme,
"ss_logit_mean": args.logit_mean,
"ss_logit_std": args.logit_std,
"ss_mode_scale": args.mode_scale,
"ss_guidance_scale": args.guidance_scale,
"ss_timestep_sampling": args.timestep_sampling,
"ss_sigmoid_scale": args.sigmoid_scale,
"ss_discrete_flow_shift": args.discrete_flow_shift,
}
datasets_metadata = []
# tag_frequency = {} # merge tag frequency for metadata editor # TODO support tag frequency
for dataset in train_dataset_group.datasets:
dataset_metadata = dataset.get_metadata()
datasets_metadata.append(dataset_metadata)
metadata["ss_datasets"] = json.dumps(datasets_metadata)
# add extra args
if args.network_args:
# metadata["ss_network_args"] = json.dumps(net_kwargs)
metadata[SS_METADATA_KEY_NETWORK_ARGS] = json.dumps(net_kwargs)
# model name and hash
if args.dit is not None:
logger.info(f"calculate hash for DiT model: {args.dit}")
sd_model_name = args.dit
if os.path.exists(sd_model_name):
metadata["ss_sd_model_hash"] = model_utils.model_hash(sd_model_name)
metadata["ss_new_sd_model_hash"] = model_utils.calculate_sha256(sd_model_name)
sd_model_name = os.path.basename(sd_model_name)
metadata["ss_sd_model_name"] = sd_model_name
if args.vae is not None:
logger.info(f"calculate hash for VAE model: {args.vae}")
vae_name = args.vae
if os.path.exists(vae_name):
metadata["ss_vae_hash"] = model_utils.model_hash(vae_name)
metadata["ss_new_vae_hash"] = model_utils.calculate_sha256(vae_name)
vae_name = os.path.basename(vae_name)
metadata["ss_vae_name"] = vae_name
metadata = {k: str(v) for k, v in metadata.items()}
# make minimum metadata for filtering
minimum_metadata = {}
for key in SS_METADATA_MINIMUM_KEYS:
if key in metadata:
minimum_metadata[key] = metadata[key]
if accelerator.is_main_process:
init_kwargs = {}
if args.wandb_run_name:
init_kwargs["wandb"] = {"name": args.wandb_run_name}
if args.log_tracker_config is not None:
init_kwargs = toml.load(args.log_tracker_config)
accelerator.init_trackers(
"network_train" if args.log_tracker_name is None else args.log_tracker_name,
config=train_utils.get_sanitized_config_or_none(args),
init_kwargs=init_kwargs,
)
# TODO skip until initial step
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
epoch_to_start = 0
global_step = 0
noise_scheduler = FlowMatchDiscreteScheduler(shift=args.discrete_flow_shift, reverse=True, solver="euler")
loss_recorder = train_utils.LossRecorder()
del train_dataset_group
# function for saving/removing
save_dtype = dit_dtype
def save_model(ckpt_name: str, unwrapped_nw, steps, epoch_no, force_sync_upload=False):
os.makedirs(args.output_dir, exist_ok=True)
ckpt_file = os.path.join(args.output_dir, ckpt_name)
accelerator.print(f"\nsaving checkpoint: {ckpt_file}")
metadata["ss_training_finished_at"] = str(time.time())
metadata["ss_steps"] = str(steps)
metadata["ss_epoch"] = str(epoch_no)
metadata_to_save = minimum_metadata if args.no_metadata else metadata
title = args.metadata_title if args.metadata_title is not None else args.output_name
if args.min_timestep is not None or args.max_timestep is not None:
min_time_step = args.min_timestep if args.min_timestep is not None else 0
max_time_step = args.max_timestep if args.max_timestep is not None else 1000
md_timesteps = (min_time_step, max_time_step)
else:
md_timesteps = None
sai_metadata = sai_model_spec.build_metadata(
None,
time.time(),
title,
None,
args.metadata_author,
args.metadata_description,
args.metadata_license,
args.metadata_tags,
timesteps=md_timesteps,
)
metadata_to_save.update(sai_metadata)
unwrapped_nw.save_weights(ckpt_file, save_dtype, metadata_to_save)
if args.huggingface_repo_id is not None:
huggingface_utils.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=force_sync_upload)
def remove_model(old_ckpt_name):
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
if os.path.exists(old_ckpt_file):
accelerator.print(f"removing old checkpoint: {old_ckpt_file}")
os.remove(old_ckpt_file)
# For --sample_at_first
optimizer_eval_fn()
self.sample_images(accelerator, args, 0, global_step, accelerator.device, vae, transformer, sample_parameters)
optimizer_train_fn()
if len(accelerator.trackers) > 0:
# log empty object to commit the sample images to wandb
accelerator.log({}, step=0)
# training loop
# log device and dtype for each model
logger.info(f"DiT dtype: {transformer.dtype}, device: {transformer.device}")
clean_memory_on_device(accelerator.device)
pos_embed_cache = {}
for epoch in range(epoch_to_start, num_train_epochs):
accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}")
current_epoch.value = epoch + 1
metadata["ss_epoch"] = str(epoch + 1)
accelerator.unwrap_model(network).on_epoch_start(transformer)
for step, batch in enumerate(train_dataloader):
latents, llm_embeds, llm_mask, clip_embeds = batch
bsz = latents.shape[0]
current_step.value = global_step
with accelerator.accumulate(training_model):
accelerator.unwrap_model(network).on_step_start()
latents = latents * vae_module.SCALING_FACTOR
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
# calculate model input and timesteps
noisy_model_input, timesteps = self.get_noisy_model_input_and_timesteps(
args, noise, latents, noise_scheduler, accelerator.device, dit_dtype
)
weighting = compute_loss_weighting_for_sd3(
args.weighting_scheme, noise_scheduler, timesteps, accelerator.device, dit_dtype
)
# ensure guidance_scale in args is float
guidance_vec = torch.full((bsz,), float(args.guidance_scale), device=accelerator.device) # , dtype=dit_dtype)
# ensure the hidden state will require grad
if args.gradient_checkpointing:
noisy_model_input.requires_grad_(True)
guidance_vec.requires_grad_(True)
pos_emb_shape = latents.shape[1:]
if pos_emb_shape not in pos_embed_cache:
freqs_cos, freqs_sin = get_rotary_pos_embed_by_shape(transformer, latents.shape[2:])
# freqs_cos = freqs_cos.to(device=accelerator.device, dtype=dit_dtype)
# freqs_sin = freqs_sin.to(device=accelerator.device, dtype=dit_dtype)
pos_embed_cache[pos_emb_shape] = (freqs_cos, freqs_sin)
else:
freqs_cos, freqs_sin = pos_embed_cache[pos_emb_shape]
# call DiT
latents = latents.to(device=accelerator.device, dtype=network_dtype)
noisy_model_input = noisy_model_input.to(device=accelerator.device, dtype=network_dtype)
# timesteps = timesteps.to(device=accelerator.device, dtype=dit_dtype)
# llm_embeds = llm_embeds.to(device=accelerator.device, dtype=dit_dtype)
# llm_mask = llm_mask.to(device=accelerator.device)
# clip_embeds = clip_embeds.to(device=accelerator.device, dtype=dit_dtype)
with accelerator.autocast():
model_pred = transformer(
noisy_model_input,
timesteps,
text_states=llm_embeds,
text_mask=llm_mask,
text_states_2=clip_embeds,
freqs_cos=freqs_cos,
freqs_sin=freqs_sin,
guidance=guidance_vec,
return_dict=False,
)
# flow matching loss
target = noise - latents
loss = torch.nn.functional.mse_loss(model_pred.to(network_dtype), target, reduction="none")
if weighting is not None:
loss = loss * weighting
# loss = loss.mean([1, 2, 3])
# # min snr gamma, scale v pred loss like noise pred, v pred like loss, debiased estimation etc.
# loss = self.post_process_loss(loss, args, timesteps, noise_scheduler)
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
accelerator.backward(loss)
if accelerator.sync_gradients:
# self.all_reduce_network(accelerator, network) # sync DDP grad manually
state = accelerate.PartialState()
if state.distributed_type != accelerate.DistributedType.NO:
for param in network.parameters():
if param.grad is not None:
param.grad = accelerator.reduce(param.grad, reduction="mean")
if args.max_grad_norm != 0.0:
params_to_clip = accelerator.unwrap_model(network).get_trainable_params()
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
if args.scale_weight_norms:
keys_scaled, mean_norm, maximum_norm = accelerator.unwrap_model(network).apply_max_norm_regularization(
args.scale_weight_norms, accelerator.device
)
max_mean_logs = {"Keys Scaled": keys_scaled, "Average key norm": mean_norm}
else:
keys_scaled, mean_norm, maximum_norm = None, None, None
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
optimizer_eval_fn()
self.sample_images(
accelerator, args, None, global_step, accelerator.device, vae, transformer, sample_parameters
)
# 指定ステップごとにモデルを保存
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
accelerator.wait_for_everyone()
if accelerator.is_main_process:
ckpt_name = train_utils.get_step_ckpt_name(args.output_name, global_step)
save_model(ckpt_name, accelerator.unwrap_model(network), global_step, epoch)
if args.save_state:
train_utils.save_and_remove_state_stepwise(args, accelerator, global_step)
remove_step_no = train_utils.get_remove_step_no(args, global_step)
if remove_step_no is not None:
remove_ckpt_name = train_utils.get_step_ckpt_name(args.output_name, remove_step_no)
remove_model(remove_ckpt_name)
optimizer_train_fn()
current_loss = loss.detach().item()
loss_recorder.add(epoch=epoch, step=step, loss=current_loss)
avr_loss: float = loss_recorder.moving_average
logs = {"avr_loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if args.scale_weight_norms:
progress_bar.set_postfix(**{**max_mean_logs, **logs})
if len(accelerator.trackers) > 0:
logs = self.generate_step_logs(
args, current_loss, avr_loss, lr_scheduler, lr_descriptions, optimizer, keys_scaled, mean_norm, maximum_norm
)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
if len(accelerator.trackers) > 0:
logs = {"loss/epoch": loss_recorder.moving_average}
accelerator.log(logs, step=epoch + 1)
accelerator.wait_for_everyone()
# 指定エポックごとにモデルを保存
optimizer_eval_fn()
if args.save_every_n_epochs is not None:
saving = (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs
if is_main_process and saving:
ckpt_name = train_utils.get_epoch_ckpt_name(args.output_name, epoch + 1)
save_model(ckpt_name, accelerator.unwrap_model(network), global_step, epoch + 1)
remove_epoch_no = train_utils.get_remove_epoch_no(args, epoch + 1)
if remove_epoch_no is not None:
remove_ckpt_name = train_utils.get_epoch_ckpt_name(args.output_name, remove_epoch_no)
remove_model(remove_ckpt_name)
if args.save_state:
train_utils.save_and_remove_state_on_epoch_end(args, accelerator, epoch + 1)
self.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, transformer, sample_parameters)
optimizer_train_fn()
# end of epoch
# metadata["ss_epoch"] = str(num_train_epochs)
metadata["ss_training_finished_at"] = str(time.time())
if is_main_process:
network = accelerator.unwrap_model(network)
accelerator.end_training()
optimizer_eval_fn()
if is_main_process and (args.save_state or args.save_state_on_train_end):
train_utils.save_state_on_train_end(args, accelerator)
if is_main_process:
ckpt_name = train_utils.get_last_ckpt_name(args.output_name)
save_model(ckpt_name, network, global_step, num_train_epochs, force_sync_upload=True)
logger.info("model saved.")
def setup_parser() -> argparse.ArgumentParser:
def int_or_float(value):
if value.endswith("%"):
try:
return float(value[:-1]) / 100.0
except ValueError:
raise argparse.ArgumentTypeError(f"Value '{value}' is not a valid percentage")
try:
float_value = float(value)
if float_value >= 1 and float_value.is_integer():
return int(value)
return float(value)
except ValueError:
raise argparse.ArgumentTypeError(f"'{value}' is not an int or float")
parser = argparse.ArgumentParser()
# general settings
parser.add_argument(
"--config_file",
type=str,
default=None,
help="using .toml instead of args to pass hyperparameter / ハイパーパラメータを引数ではなく.tomlファイルで渡す",
)
parser.add_argument(
"--dataset_config",
type=pathlib.Path,
default=None,
required=True,
help="config file for dataset / データセットの設定ファイル",
)
# training settings
parser.add_argument(
"--sdpa",
action="store_true",
help="use sdpa for CrossAttention (requires PyTorch 2.0) / CrossAttentionにsdpaを使う(PyTorch 2.0が必要)",
)
parser.add_argument(
"--flash_attn",
action="store_true",
help="use FlashAttention for CrossAttention, requires FlashAttention / CrossAttentionにFlashAttentionを使う、FlashAttentionが必要",
)
parser.add_argument(
"--sage_attn",
action="store_true",
help="use SageAttention. requires SageAttention / SageAttentionを使う。SageAttentionが必要",
)
parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数")
parser.add_argument(
"--max_train_epochs",
type=int,
default=None,
help="training epochs (overrides max_train_steps) / 学習エポック数(max_train_stepsを上書きします)",
)
parser.add_argument(
"--max_data_loader_n_workers",
type=int,
default=8,
help="max num workers for DataLoader (lower is less main RAM usage, faster epoch start and slower data loading) / DataLoaderの最大プロセス数(小さい値ではメインメモリの使用量が減りエポック間の待ち時間が減りますが、データ読み込みは遅くなります)",
)
parser.add_argument(
"--persistent_data_loader_workers",
action="store_true",
help="persistent DataLoader workers (useful for reduce time gap between epoch, but may use more memory) / DataLoader のワーカーを持続させる (エポック間の時間差を少なくするのに有効だが、より多くのメモリを消費する可能性がある)",
)
parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed")
parser.add_argument(
"--gradient_checkpointing", action="store_true", help="enable gradient checkpointing / gradient checkpointingを有効にする"
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass / 学習時に逆伝播をする前に勾配を合計するステップ数",
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help="use mixed precision / 混合精度を使う場合、その精度",
)
parser.add_argument(
"--logging_dir",
type=str,
default=None,
help="enable logging and output TensorBoard log to this directory / ログ出力を有効にしてこのディレクトリにTensorBoard用のログを出力する",
)
parser.add_argument(
"--log_with",
type=str,
default=None,
choices=["tensorboard", "wandb", "all"],
help="what logging tool(s) to use (if 'all', TensorBoard and WandB are both used) / ログ出力に使用するツール (allを指定するとTensorBoardとWandBの両方が使用される)",
)
parser.add_argument(
"--log_prefix", type=str, default=None, help="add prefix for each log directory / ログディレクトリ名の先頭に追加する文字列"
)
parser.add_argument(
"--log_tracker_name",
type=str,
default=None,
help="name of tracker to use for logging, default is script-specific default name / ログ出力に使用するtrackerの名前、省略時はスクリプトごとのデフォルト名",
)
parser.add_argument(
"--wandb_run_name",
type=str,
default=None,
help="The name of the specific wandb session / wandb ログに表示される特定の実行の名前",
)
parser.add_argument(
"--log_tracker_config",
type=str,
default=None,
help="path to tracker config file to use for logging / ログ出力に使用するtrackerの設定ファイルのパス",
)
parser.add_argument(
"--wandb_api_key",
type=str,
default=None,
help="specify WandB API key to log in before starting training (optional). / WandB APIキーを指定して学習開始前にログインする(オプション)",
)
parser.add_argument("--log_config", action="store_true", help="log training configuration / 学習設定をログに出力する")
parser.add_argument(
"--ddp_timeout",
type=int,
default=None,
help="DDP timeout (min, None for default of accelerate) / DDPのタイムアウト(分、Noneでaccelerateのデフォルト)",
)
parser.add_argument(
"--ddp_gradient_as_bucket_view",
action="store_true",
help="enable gradient_as_bucket_view for DDP / DDPでgradient_as_bucket_viewを有効にする",
)
parser.add_argument(
"--ddp_static_graph",
action="store_true",
help="enable static_graph for DDP / DDPでstatic_graphを有効にする",
)
parser.add_argument(
"--sample_every_n_steps",
type=int,
default=None,
help="generate sample images every N steps / 学習中のモデルで指定ステップごとにサンプル出力する",
)
parser.add_argument(
"--sample_at_first", action="store_true", help="generate sample images before training / 学習前にサンプル出力する"
)
parser.add_argument(
"--sample_every_n_epochs",
type=int,
default=None,
help="generate sample images every N epochs (overwrites n_steps) / 学習中のモデルで指定エポックごとにサンプル出力する(ステップ数指定を上書きします)",
)
parser.add_argument(
"--sample_prompts",
type=str,
default=None,
help="file for prompts to generate sample images / 学習中モデルのサンプル出力用プロンプトのファイル",
)
# optimizer and lr scheduler settings
parser.add_argument(
"--optimizer_type",
type=str,
default="",
help="Optimizer to use / オプティマイザの種類: AdamW (default), AdamW8bit, AdaFactor. "
"Also, you can use any optimizer by specifying the full path to the class, like 'torch.optim.AdamW', 'bitsandbytes.optim.AdEMAMix8bit' or 'bitsandbytes.optim.PagedAdEMAMix8bit' etc. / ",
)
parser.add_argument(
"--optimizer_args",
type=str,
default=None,
nargs="*",
help='additional arguments for optimizer (like "weight_decay=0.01 betas=0.9,0.999 ...") / オプティマイザの追加引数(例: "weight_decay=0.01 betas=0.9,0.999 ...")',
)
parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率")
parser.add_argument(
"--max_grad_norm",
default=1.0,
type=float,
help="Max gradient norm, 0 for no clipping / 勾配正規化の最大norm、0でclippingを行わない",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help="scheduler to use for learning rate / 学習率のスケジューラ: linear, cosine, cosine_with_restarts, polynomial, constant (default), constant_with_warmup, adafactor",
)
parser.add_argument(
"--lr_warmup_steps",
type=int_or_float,
default=0,
help="Int number of steps for the warmup in the lr scheduler (default is 0) or float with ratio of train steps"
" / 学習率のスケジューラをウォームアップするステップ数(デフォルト0)、または学習ステップの比率(1未満のfloat値の場合)",
)
parser.add_argument(
"--lr_decay_steps",
type=int_or_float,
default=0,
help="Int number of steps for the decay in the lr scheduler (default is 0) or float (<1) with ratio of train steps"
" / 学習率のスケジューラを減衰させるステップ数(デフォルト0)、または学習ステップの比率(1未満のfloat値の場合)",
)
parser.add_argument(
"--lr_scheduler_num_cycles",
type=int,
default=1,
help="Number of restarts for cosine scheduler with restarts / cosine with restartsスケジューラでのリスタート回数",
)
parser.add_argument(
"--lr_scheduler_power",
type=float,
default=1,
help="Polynomial power for polynomial scheduler / polynomialスケジューラでのpolynomial power",
)
parser.add_argument(
"--lr_scheduler_timescale",
type=int,
default=None,
help="Inverse sqrt timescale for inverse sqrt scheduler,defaults to `num_warmup_steps`"
+ " / 逆平方根スケジューラのタイムスケール、デフォルトは`num_warmup_steps`",
)
parser.add_argument(
"--lr_scheduler_min_lr_ratio",
type=float,
default=None,
help="The minimum learning rate as a ratio of the initial learning rate for cosine with min lr scheduler and warmup decay scheduler"
+ " / 初期学習率の比率としての最小学習率を指定する、cosine with min lr と warmup decay スケジューラ で有効",
)
parser.add_argument("--lr_scheduler_type", type=str, default="", help="custom scheduler module / 使用するスケジューラ")
parser.add_argument(
"--lr_scheduler_args",
type=str,
default=None,
nargs="*",
help='additional arguments for scheduler (like "T_max=100") / スケジューラの追加引数(例: "T_max100")',
)
# model settings
parser.add_argument("--dit", type=str, required=True, help="DiT checkpoint path / DiTのチェックポイントのパス")
parser.add_argument("--dit_dtype", type=str, default=None, help="data type for DiT, default is bfloat16")
parser.add_argument("--vae", type=str, help="VAE checkpoint path / VAEのチェックポイントのパス")
parser.add_argument("--vae_dtype", type=str, default=None, help="data type for VAE, default is float16")
parser.add_argument(
"--vae_tiling",
action="store_true",
help="enable spatial tiling for VAE, default is False. If vae_spatial_tile_sample_min_size is set, this is automatically enabled."
" / VAEの空間タイリングを有効にする、デフォルトはFalse。vae_spatial_tile_sample_min_sizeが設定されている場合、自動的に有効になります。",
)
parser.add_argument("--vae_chunk_size", type=int, default=None, help="chunk size for CausalConv3d in VAE")
parser.add_argument(
"--vae_spatial_tile_sample_min_size", type=int, default=None, help="spatial tile sample min size for VAE, default 256"
)
parser.add_argument("--text_encoder1", type=str, help="Text Encoder 1 directory / テキストエンコーダ1のディレクトリ")
parser.add_argument("--text_encoder2", type=str, help="Text Encoder 2 directory / テキストエンコーダ2のディレクトリ")
parser.add_argument("--text_encoder_dtype", type=str, default=None, help="data type for Text Encoder, default is float16")
parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for LLM / LLMにfp8を使う")
parser.add_argument("--fp8_base", action="store_true", help="use fp8 for base model / base modelにfp8を使う")
# parser.add_argument("--full_fp16", action="store_true", help="fp16 training including gradients / 勾配も含めてfp16で学習する")
# parser.add_argument("--full_bf16", action="store_true", help="bf16 training including gradients / 勾配も含めてbf16で学習する")
parser.add_argument(
"--blocks_to_swap",
type=int,
default=None,
help="number of blocks to swap in the model, max XXX / モデル内のブロックの数、最大XXX",
)
parser.add_argument(
"--img_in_txt_in_offloading",
action="store_true",
help="offload img_in and txt_in to cpu / img_inとtxt_inをCPUにオフロードする",
)
# parser.add_argument("--flow_shift", type=float, default=7.0, help="Shift factor for flow matching schedulers")
parser.add_argument("--guidance_scale", type=float, default=1.0, help="Embeded classifier free guidance scale.")
parser.add_argument(
"--timestep_sampling",
choices=["sigma", "uniform", "sigmoid", "shift"],
default="sigma",
help="Method to sample timesteps: sigma-based, uniform random, sigmoid of random normal and shift of sigmoid."
" / タイムステップをサンプリングする方法:sigma、random uniform、random normalのsigmoid、sigmoidのシフト。",
)
parser.add_argument(
"--discrete_flow_shift",
type=float,
default=1.0,
help="Discrete flow shift for the Euler Discrete Scheduler, default is 1.0. / Euler Discrete Schedulerの離散フローシフト、デフォルトは1.0。",
)
parser.add_argument(
"--sigmoid_scale",
type=float,
default=1.0,
help='Scale factor for sigmoid timestep sampling (only used when timestep-sampling is "sigmoid" or "shift"). / sigmoidタイムステップサンプリングの倍率(timestep-samplingが"sigmoid"または"shift"の場合のみ有効)。',
)
parser.add_argument(
"--weighting_scheme",
type=str,
default="none",
choices=["logit_normal", "mode", "cosmap", "sigma_sqrt", "none"],
help="weighting scheme for timestep distribution. Default is none"
" / タイムステップ分布の重み付けスキーム、デフォルトはnone",
)
parser.add_argument(
"--logit_mean",
type=float,
default=0.0,
help="mean to use when using the `'logit_normal'` weighting scheme / `'logit_normal'`重み付けスキームを使用する場合の平均",
)
parser.add_argument(
"--logit_std",
type=float,
default=1.0,
help="std to use when using the `'logit_normal'` weighting scheme / `'logit_normal'`重み付けスキームを使用する場合のstd",
)
parser.add_argument(
"--mode_scale",
type=float,
default=1.29,
help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme` / モード重み付けスキームのスケール",
)
parser.add_argument(
"--min_timestep",
type=int,
default=None,
help="set minimum time step for training (0~999, default is 0) / 学習時のtime stepの最小値を設定する(0~999で指定、省略時はデフォルト値(0)) ",
)
parser.add_argument(
"--max_timestep",
type=int,
default=None,
help="set maximum time step for training (1~1000, default is 1000) / 学習時のtime stepの最大値を設定する(1~1000で指定、省略時はデフォルト値(1000))",
)
parser.add_argument(
"--show_timesteps",
type=str,
default=None,
choices=["image", "console"],
help="show timesteps in image or console, and return to console / タイムステップを画像またはコンソールに表示し、コンソールに戻る",
)
# network settings
parser.add_argument(
"--no_metadata", action="store_true", help="do not save metadata in output model / メタデータを出力先モデルに保存しない"
)
parser.add_argument(
"--network_weights", type=str, default=None, help="pretrained weights for network / 学習するネットワークの初期重み"
)
parser.add_argument(
"--network_module", type=str, default=None, help="network module to train / 学習対象のネットワークのモジュール"
)
parser.add_argument(
"--network_dim",
type=int,
default=None,
help="network dimensions (depends on each network) / モジュールの次元数(ネットワークにより定義は異なります)",
)
parser.add_argument(
"--network_alpha",
type=float,
default=1,
help="alpha for LoRA weight scaling, default 1 (same as network_dim for same behavior as old version) / LoRaの重み調整のalpha値、デフォルト1(旧バージョンと同じ動作をするにはnetwork_dimと同じ値を指定)",
)
parser.add_argument(
"--network_dropout",
type=float,
default=None,
help="Drops neurons out of training every step (0 or None is default behavior (no dropout), 1 would drop all neurons) / 訓練時に毎ステップでニューロンをdropする(0またはNoneはdropoutなし、1は全ニューロンをdropout)",
)
parser.add_argument(
"--network_args",
type=str,
default=None,
nargs="*",
help="additional arguments for network (key=value) / ネットワークへの追加の引数",
)
parser.add_argument(
"--training_comment",
type=str,
default=None,
help="arbitrary comment string stored in metadata / メタデータに記録する任意のコメント文字列",
)
parser.add_argument(
"--dim_from_weights",
action="store_true",
help="automatically determine dim (rank) from network_weights / dim (rank)をnetwork_weightsで指定した重みから自動で決定する",
)
parser.add_argument(
"--scale_weight_norms",
type=float,
default=None,
help="Scale the weight of each key pair to help prevent overtraing via exploding gradients. (1 is a good starting point) / 重みの値をスケーリングして勾配爆発を防ぐ(1が初期値としては適当)",
)
parser.add_argument(
"--base_weights",
type=str,
default=None,
nargs="*",
help="network weights to merge into the model before training / 学習前にあらかじめモデルにマージするnetworkの重みファイル",
)
parser.add_argument(
"--base_weights_multiplier",
type=float,
default=None,
nargs="*",
help="multiplier for network weights to merge into the model before training / 学習前にあらかじめモデルにマージするnetworkの重みの倍率",
)
# save and load settings
parser.add_argument(
"--output_dir", type=str, default=None, help="directory to output trained model / 学習後のモデル出力先ディレクトリ"
)
parser.add_argument(
"--output_name",
type=str,
default=None,
required=True,
help="base name of trained model file / 学習後のモデルの拡張子を除くファイル名",
)
parser.add_argument("--resume", type=str, default=None, help="saved state to resume training / 学習再開するモデルのstate")
parser.add_argument(
"--save_every_n_epochs",
type=int,
default=None,
help="save checkpoint every N epochs / 学習中のモデルを指定エポックごとに保存する",
)
parser.add_argument(
"--save_every_n_steps",
type=int,
default=None,
help="save checkpoint every N steps / 学習中のモデルを指定ステップごとに保存する",
)
parser.add_argument(
"--save_last_n_epochs",
type=int,
default=None,
help="save last N checkpoints when saving every N epochs (remove older checkpoints) / 指定エポックごとにモデルを保存するとき最大Nエポック保存する(古いチェックポイントは削除する)",
)
parser.add_argument(
"--save_last_n_epochs_state",
type=int,
default=None,
help="save last N checkpoints of state (overrides the value of --save_last_n_epochs)/ 最大Nエポックstateを保存する(--save_last_n_epochsの指定を上書きする)",
)
parser.add_argument(
"--save_last_n_steps",
type=int,
default=None,
help="save checkpoints until N steps elapsed (remove older checkpoints if N steps elapsed) / 指定ステップごとにモデルを保存するとき、このステップ数経過するまで保存する(このステップ数経過したら削除する)",
)
parser.add_argument(
"--save_last_n_steps_state",
type=int,
default=None,
help="save states until N steps elapsed (remove older states if N steps elapsed, overrides --save_last_n_steps) / 指定ステップごとにstateを保存するとき、このステップ数経過するまで保存する(このステップ数経過したら削除する。--save_last_n_stepsを上書きする)",
)
parser.add_argument(
"--save_state",
action="store_true",
help="save training state additionally (including optimizer states etc.) when saving model / optimizerなど学習状態も含めたstateをモデル保存時に追加で保存する",
)
parser.add_argument(
"--save_state_on_train_end",
action="store_true",
help="save training state (including optimizer states etc.) on train end even if --save_state is not specified"
" / --save_stateが未指定時にもoptimizerなど学習状態も含めたstateを学習終了時に保存する",
)
# SAI Model spec
parser.add_argument(
"--metadata_title",
type=str,
default=None,
help="title for model metadata (default is output_name) / メタデータに書き込まれるモデルタイトル、省略時はoutput_name",
)
parser.add_argument(
"--metadata_author",
type=str,
default=None,
help="author name for model metadata / メタデータに書き込まれるモデル作者名",
)
parser.add_argument(
"--metadata_description",
type=str,
default=None,
help="description for model metadata / メタデータに書き込まれるモデル説明",
)
parser.add_argument(
"--metadata_license",
type=str,
default=None,
help="license for model metadata / メタデータに書き込まれるモデルライセンス",
)
parser.add_argument(
"--metadata_tags",
type=str,
default=None,
help="tags for model metadata, separated by comma / メタデータに書き込まれるモデルタグ、カンマ区切り",
)
# huggingface settings
parser.add_argument(
"--huggingface_repo_id",
type=str,
default=None,
help="huggingface repo name to upload / huggingfaceにアップロードするリポジトリ名",
)
parser.add_argument(
"--huggingface_repo_type",
type=str,
default=None,
help="huggingface repo type to upload / huggingfaceにアップロードするリポジトリの種類",
)
parser.add_argument(
"--huggingface_path_in_repo",
type=str,
default=None,
help="huggingface model path to upload files / huggingfaceにアップロードするファイルのパス",
)
parser.add_argument("--huggingface_token", type=str, default=None, help="huggingface token / huggingfaceのトークン")
parser.add_argument(
"--huggingface_repo_visibility",
type=str,
default=None,
help="huggingface repository visibility ('public' for public, 'private' or None for private) / huggingfaceにアップロードするリポジトリの公開設定('public'で公開、'private'またはNoneで非公開)",
)
parser.add_argument(
"--save_state_to_huggingface", action="store_true", help="save state to huggingface / huggingfaceにstateを保存する"
)
parser.add_argument(
"--resume_from_huggingface",
action="store_true",
help="resume from huggingface (ex: --resume {repo_id}/{path_in_repo}:{revision}:{repo_type}) / huggingfaceから学習を再開する(例: --resume {repo_id}/{path_in_repo}:{revision}:{repo_type})",
)
parser.add_argument(
"--async_upload",
action="store_true",
help="upload to huggingface asynchronously / huggingfaceに非同期でアップロードする",
)
return parser
def read_config_from_file(args: argparse.Namespace, parser: argparse.ArgumentParser):
if not args.config_file:
return args
config_path = args.config_file + ".toml" if not args.config_file.endswith(".toml") else args.config_file
if not os.path.exists(config_path):
logger.info(f"{config_path} not found.")
exit(1)
logger.info(f"Loading settings from {config_path}...")
with open(config_path, "r", encoding="utf-8") as f:
config_dict = toml.load(f)
# combine all sections into one
ignore_nesting_dict = {}
for section_name, section_dict in config_dict.items():
# if value is not dict, save key and value as is
if not isinstance(section_dict, dict):
ignore_nesting_dict[section_name] = section_dict
continue
# if value is dict, save all key and value into one dict
for key, value in section_dict.items():
ignore_nesting_dict[key] = value
config_args = argparse.Namespace(**ignore_nesting_dict)
args = parser.parse_args(namespace=config_args)
args.config_file = os.path.splitext(args.config_file)[0]
logger.info(args.config_file)
return args
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
args = read_config_from_file(args, parser)
trainer = NetworkTrainer()
trainer.train(args)
|