--- library_name: transformers license: gemma base_model: vidore/colpaligemma-3b-pt-448-base tags: - colpali - generated_from_trainer pipeline_tag: visual-document-retrieval model-index: - name: finetune_colpali_v1_2-german_ver3-4bit results: [] --- # finetune_colpali_v1_2-german_ver3-4bit This model is a fine-tuned version of [vidore/colpaligemma-3b-pt-448-base](https://huggingface.co/vidore/colpaligemma-3b-pt-448-base) on the German_docx dataset. It achieves the following results on the evaluation set: - Loss: 0.0815 - Model Preparation Time: 0.0061 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | |:-------------:|:------:|:----:|:---------------:|:----------------------:| | No log | 0.0146 | 1 | 0.3622 | 0.0061 | | 1.6392 | 0.1460 | 10 | 0.3430 | 0.0061 | | 1.1999 | 0.2920 | 20 | 0.3049 | 0.0061 | | 1.2826 | 0.4380 | 30 | 0.2768 | 0.0061 | | 0.7583 | 0.5839 | 40 | 0.2492 | 0.0061 | | 0.603 | 0.7299 | 50 | 0.2258 | 0.0061 | | 1.014 | 0.8759 | 60 | 0.1958 | 0.0061 | | 0.8131 | 1.0219 | 70 | 0.1688 | 0.0061 | | 0.6346 | 1.1679 | 80 | 0.1591 | 0.0061 | | 0.5089 | 1.3139 | 90 | 0.1502 | 0.0061 | | 0.4616 | 1.4599 | 100 | 0.1341 | 0.0061 | | 0.4498 | 1.6058 | 110 | 0.1136 | 0.0061 | | 0.4422 | 1.7518 | 120 | 0.1062 | 0.0061 | | 0.3519 | 1.8978 | 130 | 0.0989 | 0.0061 | | 0.2382 | 2.0438 | 140 | 0.0925 | 0.0061 | | 0.242 | 2.1898 | 150 | 0.0894 | 0.0061 | | 0.3462 | 2.3358 | 160 | 0.0907 | 0.0061 | | 0.1371 | 2.4818 | 170 | 0.0862 | 0.0061 | | 0.2691 | 2.6277 | 180 | 0.0838 | 0.0061 | | 0.0869 | 2.7737 | 190 | 0.0833 | 0.0061 | | 0.3401 | 2.9197 | 200 | 0.0815 | 0.0061 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.3.1 - Datasets 3.1.0 - Tokenizers 0.20.1