--- tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: wav2vec2-base-random-stop-classification-4 results: [] --- # wav2vec2-base-random-stop-classification-4 This model is a fine-tuned version of [](https://huggingface.co/) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3843 - Accuracy: 0.8706 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6928 | 0.99 | 18 | 0.6588 | 0.6267 | | 0.6746 | 1.97 | 36 | 0.5702 | 0.6969 | | 0.5823 | 2.96 | 54 | 0.5035 | 0.7772 | | 0.5573 | 4.0 | 73 | 0.4111 | 0.8188 | | 0.5324 | 4.99 | 91 | 0.4359 | 0.7997 | | 0.6058 | 5.97 | 109 | 0.4688 | 0.7875 | | 0.4805 | 6.96 | 127 | 0.4055 | 0.8351 | | 0.4641 | 8.0 | 146 | 0.4024 | 0.8351 | | 0.4292 | 8.99 | 164 | 0.3913 | 0.8474 | | 0.4217 | 9.97 | 182 | 0.3975 | 0.8522 | | 0.3892 | 10.96 | 200 | 0.3808 | 0.8460 | | 0.4056 | 12.0 | 219 | 0.4126 | 0.8515 | | 0.3848 | 12.99 | 237 | 0.3602 | 0.8508 | | 0.3698 | 13.97 | 255 | 0.3913 | 0.8488 | | 0.3893 | 14.96 | 273 | 0.3611 | 0.8692 | | 0.3341 | 16.0 | 292 | 0.3791 | 0.8624 | | 0.3376 | 16.99 | 310 | 0.3578 | 0.8624 | | 0.3331 | 17.97 | 328 | 0.3660 | 0.8658 | | 0.3215 | 18.96 | 346 | 0.3817 | 0.8535 | | 0.2982 | 20.0 | 365 | 0.4000 | 0.8658 | | 0.2885 | 20.99 | 383 | 0.3674 | 0.8658 | | 0.3124 | 21.97 | 401 | 0.3770 | 0.8672 | | 0.2926 | 22.96 | 419 | 0.3779 | 0.8651 | | 0.2941 | 24.0 | 438 | 0.3775 | 0.8733 | | 0.2699 | 24.66 | 450 | 0.3843 | 0.8706 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2