surajjoshi commited on
Commit
64c8db4
·
1 Parent(s): fc9e7f6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -14
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Accuracy
26
  type: accuracy
27
- value: 0.9911764705882353
28
  - name: F1
29
  type: f1
30
- value: 0.9923273657289001
31
  - name: Recall
32
  type: recall
33
- value: 0.9948717948717949
34
  - name: Precision
35
  type: precision
36
- value: 0.9897959183673469
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.0484
47
- - Accuracy: 0.9912
48
- - F1: 0.9923
49
- - Recall: 0.9949
50
- - Precision: 0.9898
51
 
52
  ## Model description
53
 
@@ -81,15 +81,15 @@ The following hyperparameters were used during training:
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
83
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
84
- | 0.3405 | 1.0 | 24 | 0.1137 | 0.9647 | 0.9688 | 0.9538 | 0.9841 |
85
- | 0.2449 | 2.0 | 48 | 0.0811 | 0.9735 | 0.9766 | 0.9641 | 0.9895 |
86
- | 0.1713 | 3.0 | 72 | 0.0613 | 0.9794 | 0.9818 | 0.9692 | 0.9947 |
87
- | 0.1615 | 4.0 | 96 | 0.0484 | 0.9912 | 0.9923 | 0.9949 | 0.9898 |
88
 
89
 
90
  ### Framework versions
91
 
92
  - Transformers 4.23.1
93
- - Pytorch 1.12.1+cu113
94
  - Datasets 2.6.1
95
  - Tokenizers 0.13.1
 
24
  metrics:
25
  - name: Accuracy
26
  type: accuracy
27
+ value: 0.9977843426883308
28
  - name: F1
29
  type: f1
30
+ value: 0.9984067976633033
31
  - name: Recall
32
  type: recall
33
+ value: 0.9978768577494692
34
  - name: Precision
35
  type: precision
36
+ value: 0.9989373007438895
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.0101
47
+ - Accuracy: 0.9978
48
+ - F1: 0.9984
49
+ - Recall: 0.9979
50
+ - Precision: 0.9989
51
 
52
  ## Model description
53
 
 
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
83
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
84
+ | 0.1884 | 1.0 | 95 | 0.0706 | 0.9705 | 0.9787 | 0.9756 | 0.9818 |
85
+ | 0.1134 | 2.0 | 190 | 0.0364 | 0.9889 | 0.9920 | 0.9883 | 0.9957 |
86
+ | 0.1031 | 3.0 | 285 | 0.0116 | 0.9963 | 0.9973 | 0.9947 | 1.0 |
87
+ | 0.0746 | 4.0 | 380 | 0.0101 | 0.9978 | 0.9984 | 0.9979 | 0.9989 |
88
 
89
 
90
  ### Framework versions
91
 
92
  - Transformers 4.23.1
93
+ - Pytorch 1.12.1
94
  - Datasets 2.6.1
95
  - Tokenizers 0.13.1