surajjoshi commited on
Commit
2362854
·
1 Parent(s): 0656908

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -8
README.md CHANGED
@@ -4,9 +4,24 @@ tags:
4
  - generated_from_trainer
5
  datasets:
6
  - imagefolder
 
 
7
  model-index:
8
  - name: swin-tiny-patch4-window7-224-finetuned-brainTumorData
9
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -16,13 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
18
  It achieves the following results on the evaluation set:
19
- - eval_loss: 0.0376
20
- - eval_accuracy: 0.9902
21
- - eval_runtime: 88.2002
22
- - eval_samples_per_second: 3.481
23
- - eval_steps_per_second: 0.113
24
- - epoch: 3.64
25
- - step: 77
26
 
27
  ## Model description
28
 
@@ -52,6 +62,16 @@ The following hyperparameters were used during training:
52
  - lr_scheduler_warmup_ratio: 0.1
53
  - num_epochs: 4
54
 
 
 
 
 
 
 
 
 
 
 
55
  ### Framework versions
56
 
57
  - Transformers 4.23.1
 
4
  - generated_from_trainer
5
  datasets:
6
  - imagefolder
7
+ metrics:
8
+ - accuracy
9
  model-index:
10
  - name: swin-tiny-patch4-window7-224-finetuned-brainTumorData
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.990228013029316
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.0352
35
+ - Accuracy: 0.9902
 
 
 
 
 
36
 
37
  ## Model description
38
 
 
62
  - lr_scheduler_warmup_ratio: 0.1
63
  - num_epochs: 4
64
 
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 0.3818 | 0.97 | 21 | 0.1545 | 0.9707 |
70
+ | 0.2407 | 1.97 | 42 | 0.0768 | 0.9739 |
71
+ | 0.1841 | 2.97 | 63 | 0.0439 | 0.9870 |
72
+ | 0.1776 | 3.97 | 84 | 0.0352 | 0.9902 |
73
+
74
+
75
  ### Framework versions
76
 
77
  - Transformers 4.23.1