File size: 7,740 Bytes
894a37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# coding=utf-8
"""Tokenization classes for Ccubed"""

import os
import json
from typing import List, Union, Optional
from transformers import AutoTokenizer
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.utils import logging
from transformers.feature_extraction_utils import BatchFeature

logger = logging.get_logger(__name__)

class CcubedDualTokenizer(ProcessorMixin):
    r"""

    CcubedDualTokenizer is tokenizer for the Ccubed model. It processes context and main text.



    Args:

        context_tokenizer ([`PreTrainedTokenizer`]):

            The tokenizer for context.

        text_tokenizer ([`PreTrainedTokenizer`]):

            The tokenizer for main text.

    """

    attributes = ["context_tokenizer", "text_tokenizer"]
    context_tokenizer_class = "AutoTokenizer"
    text_tokenizer_class = "AutoTokenizer"

    def __init__(self, context_tokenizer=None, text_tokenizer=None):
        super().__init__(context_tokenizer, text_tokenizer)
    
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
        """

        Load both context and text tokenizers from a given repository.



        Args:

            pretrained_model_name_or_path (str): The name or path of the Hugging Face repository.



        Returns:

            CcubedDualTokenizer: An instance of the tokenizer class.

        """
        # Load context_tokenizer from 'context_tokenizer' directory
        context_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path,
                                                          subfolder="context_tokenizer",
                                                          **kwargs
        )

        # Load text_tokenizer from 'text_tokenizer' directory
        text_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path,
                                                       subfolder="text_tokenizer",
                                                       **kwargs
        )

        # Return a new instance of CcubedDualTokenizer with both tokenizers loaded
        return cls(context_tokenizer=context_tokenizer, text_tokenizer=text_tokenizer)

    def save_pretrained(self, save_directory: str, **kwargs):
        """

        Save the tokenizer to a directory, so that it can be reloaded using the `from_pretrained` class method.



        Args:

            save_directory (str): Directory to which to save.

        """
        # Save context tokenizer
        context_save_dir = os.path.join(save_directory, 'context_tokenizer')
        self.context_tokenizer.save_pretrained(context_save_dir, **kwargs)

        # Save text tokenizer
        text_save_dir = os.path.join(save_directory, 'text_tokenizer')
        self.text_tokenizer.save_pretrained(text_save_dir, **kwargs)

        # Save tokenizer config
        tokenizer_config = {
            "tokenizer_class": self.__class__.__name__,
        }

        with open(os.path.join(save_directory, 'tokenizer_config.json'), 'w', encoding='utf-8') as f:
            json.dump(tokenizer_config, f, ensure_ascii=False)

    def __call__(

        self,

        context: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,

        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,

        return_tensors: Optional[str] = None,

        **kwargs

    ) -> BatchFeature:
        """

        Main method to prepare inputs for the Ccubed model.



        Args:

            context: Context text input.

            text: Main text input.

            return_tensors: Type of tensors to return.



        Returns:

            BatchFeature: A BatchFeature object containing model inputs.

        """
        if context is None and text is None:
            raise ValueError("You must provide either context or text.")

        features = {}

        if context is not None:
            context_features = self.context_tokenizer(
                context,
                return_tensors=return_tensors,
                **kwargs
            )
            features.update({f"context_{k}": v for k, v in context_features.items()})

        if text is not None:
            text_features = self.text_tokenizer(
                text,
                return_tensors=return_tensors,
                **kwargs
            )
            features.update({k: v for k, v in text_features.items()})

        return BatchFeature(data=features, tensor_type=return_tensors)

    def pad(

        self,

        encoded_inputs,

        padding=True,

        max_length=None,

        return_tensors=None,

        **kwargs

    ):
        """

        Pads the encoded inputs to the maximum length in the batch.



        Args:

            encoded_inputs: A list of dictionaries containing context and text features.

            padding: Whether to pad sequences.

            max_length: Maximum length for padding.

            return_tensors: Type of tensors to return.



        Returns:

            A dictionary with padded sequences.

        """
        # Separate context and text features
        context_features = []
        text_features = []

        for feature in encoded_inputs:
            # Extract context features
            context_feature = {
                k[len("context_"):]: v
                for k, v in feature.items()
                if k.startswith("context_")
            }
            if context_feature:
                context_features.append(context_feature)
            # Extract text features
            text_feature = {
                k: v
                for k, v in feature.items()
                if not k.startswith("context_")
            }
            if text_feature:
                text_features.append(text_feature)

        # Pad context features
        if context_features:
            context_padded = self.context_tokenizer.pad(
                context_features,
                padding=padding,
                max_length=max_length,
                return_tensors=return_tensors,
                **kwargs.get("context_kwargs", {})
            )
            context_padded = {f"context_{k}": v for k, v in context_padded.items()}
        else:
            context_padded = {}

        # Pad text features
        if text_features:
            text_padded = self.text_tokenizer.pad(
                text_features,
                padding=padding,
                max_length=max_length,
                return_tensors=return_tensors,
                **kwargs.get("text_kwargs", {})
            )
            text_padded = {k: v for k, v in text_padded.items()}
        else:
            text_padded = {}

        # Combine padded features
        padded_features = {**context_padded, **text_padded}

        return BatchFeature(data=padded_features, tensor_type=return_tensors)

    def batch_decode(self, *args, **kwargs):
        """

        Calls the batch_decode method of the text_tokenizer.

        """
        return self.text_tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        """

        Calls the decode method of the text_tokenizer.

        """
        return self.text_tokenizer.decode(*args, **kwargs)

    @property
    def model_input_names(self):
        """

        Returns the model input names.

        """
        return list(dict.fromkeys(self.context_tokenizer.model_input_names + self.text_tokenizer.model_input_names))