yonigozlan HF staff commited on
Commit
f445e41
·
verified ·
1 Parent(s): 4a5190b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -14
README.md CHANGED
@@ -39,8 +39,8 @@ The original code can be found [here](https://github.com/Ucas-HaoranWei/GOT-OCR2
39
  >>> from transformers import AutoProcessor, AutoModelForImageTextToText
40
 
41
  >>> device = "cuda" if torch.cuda.is_available() else "cpu"
42
- >>> model = AutoModelForImageTextToText.from_pretrained("yonigozlan/GOT-OCR-2.0-hf", device_map=device)
43
- >>> processor = AutoProcessor.from_pretrained("yonigozlan/GOT-OCR-2.0-hf")
44
 
45
  >>> image = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/image_ocr.jpg"
46
  >>> inputs = processor(image, return_tensors="pt").to(device)
@@ -63,8 +63,8 @@ The original code can be found [here](https://github.com/Ucas-HaoranWei/GOT-OCR2
63
  >>> from transformers import AutoProcessor, AutoModelForImageTextToText
64
 
65
  >>> device = "cuda" if torch.cuda.is_available() else "cpu"
66
- >>> model = AutoModelForImageTextToText.from_pretrained("yonigozlan/GOT-OCR-2.0-hf", device_map=device)
67
- >>> processor = AutoProcessor.from_pretrained("yonigozlan/GOT-OCR-2.0-hf")
68
 
69
  >>> image1 = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/multi_box.png"
70
  >>> image2 = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/image_ocr.jpg"
@@ -91,8 +91,8 @@ GOT-OCR2 can also generate formatted text, such as markdown or LaTeX. Here is an
91
  >>> from transformers import AutoProcessor, AutoModelForImageTextToText
92
 
93
  >>> device = "cuda" if torch.cuda.is_available() else "cpu"
94
- >>> model = AutoModelForImageTextToText.from_pretrained("yonigozlan/GOT-OCR-2.0-hf", device_map=device)
95
- >>> processor = AutoProcessor.from_pretrained("yonigozlan/GOT-OCR-2.0-hf")
96
 
97
  >>> image = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/latex.png"
98
  >>> inputs = processor(image, return_tensors="pt", format=True).to(device)
@@ -119,8 +119,8 @@ Here is an example of how to process multiple pages at once:
119
  >>> from transformers import AutoProcessor, AutoModelForImageTextToText
120
 
121
  >>> device = "cuda" if torch.cuda.is_available() else "cpu"
122
- >>> model = AutoModelForImageTextToText.from_pretrained("yonigozlan/GOT-OCR-2.0-hf", device_map=device)
123
- >>> processor = AutoProcessor.from_pretrained("yonigozlan/GOT-OCR-2.0-hf")
124
 
125
  >>> image1 = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/page1.png"
126
  >>> image2 = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/page2.png"
@@ -148,8 +148,8 @@ Here is an example of how to process cropped patches:
148
  >>> from transformers import AutoProcessor, AutoModelForImageTextToText
149
 
150
  >>> device = "cuda" if torch.cuda.is_available() else "cpu"
151
- >>> model = AutoModelForImageTextToText.from_pretrained("yonigozlan/GOT-OCR-2.0-hf", torch_dtype=torch.bfloat16, device_map=device)
152
- >>> processor = AutoProcessor.from_pretrained("yonigozlan/GOT-OCR-2.0-hf")
153
 
154
  >>> image = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/one_column.png"
155
  >>> inputs = processor(image, return_tensors="pt", format=True, crop_to_patches=True, max_patches=3).to(device)
@@ -174,8 +174,8 @@ GOT supports interactive OCR, where the user can specify the region to be recogn
174
  >>> from transformers import AutoProcessor, AutoModelForImageTextToText
175
 
176
  >>> device = "cuda" if torch.cuda.is_available() else "cpu"
177
- >>> model = AutoModelForImageTextToText.from_pretrained("yonigozlan/GOT-OCR-2.0-hf", device_map=device)
178
- >>> processor = AutoProcessor.from_pretrained("yonigozlan/GOT-OCR-2.0-hf")
179
 
180
  >>> image = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/multi_box.png"
181
  >>> inputs = processor(image, return_tensors="pt", color="green").to(device) # or box=[x1, y1, x2, y2] for coordinates (image pixels)
@@ -202,8 +202,8 @@ Here is an example of how to process sheet music:
202
  >>> import verovio
203
 
204
  >>> device = "cuda" if torch.cuda.is_available() else "cpu"
205
- >>> model = AutoModelForImageTextToText.from_pretrained("yonigozlan/GOT-OCR-2.0-hf", device_map=device)
206
- >>> processor = AutoProcessor.from_pretrained("yonigozlan/GOT-OCR-2.0-hf")
207
 
208
  >>> image = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/sheet_music.png"
209
  >>> inputs = processor(image, return_tensors="pt", format=True).to(device)
 
39
  >>> from transformers import AutoProcessor, AutoModelForImageTextToText
40
 
41
  >>> device = "cuda" if torch.cuda.is_available() else "cpu"
42
+ >>> model = AutoModelForImageTextToText.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", device_map=device)
43
+ >>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf")
44
 
45
  >>> image = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/image_ocr.jpg"
46
  >>> inputs = processor(image, return_tensors="pt").to(device)
 
63
  >>> from transformers import AutoProcessor, AutoModelForImageTextToText
64
 
65
  >>> device = "cuda" if torch.cuda.is_available() else "cpu"
66
+ >>> model = AutoModelForImageTextToText.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", device_map=device)
67
+ >>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf")
68
 
69
  >>> image1 = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/multi_box.png"
70
  >>> image2 = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/image_ocr.jpg"
 
91
  >>> from transformers import AutoProcessor, AutoModelForImageTextToText
92
 
93
  >>> device = "cuda" if torch.cuda.is_available() else "cpu"
94
+ >>> model = AutoModelForImageTextToText.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", device_map=device)
95
+ >>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf")
96
 
97
  >>> image = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/latex.png"
98
  >>> inputs = processor(image, return_tensors="pt", format=True).to(device)
 
119
  >>> from transformers import AutoProcessor, AutoModelForImageTextToText
120
 
121
  >>> device = "cuda" if torch.cuda.is_available() else "cpu"
122
+ >>> model = AutoModelForImageTextToText.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", device_map=device)
123
+ >>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf")
124
 
125
  >>> image1 = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/page1.png"
126
  >>> image2 = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/page2.png"
 
148
  >>> from transformers import AutoProcessor, AutoModelForImageTextToText
149
 
150
  >>> device = "cuda" if torch.cuda.is_available() else "cpu"
151
+ >>> model = AutoModelForImageTextToText.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", torch_dtype=torch.bfloat16, device_map=device)
152
+ >>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf")
153
 
154
  >>> image = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/one_column.png"
155
  >>> inputs = processor(image, return_tensors="pt", format=True, crop_to_patches=True, max_patches=3).to(device)
 
174
  >>> from transformers import AutoProcessor, AutoModelForImageTextToText
175
 
176
  >>> device = "cuda" if torch.cuda.is_available() else "cpu"
177
+ >>> model = AutoModelForImageTextToText.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", device_map=device)
178
+ >>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf")
179
 
180
  >>> image = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/multi_box.png"
181
  >>> inputs = processor(image, return_tensors="pt", color="green").to(device) # or box=[x1, y1, x2, y2] for coordinates (image pixels)
 
202
  >>> import verovio
203
 
204
  >>> device = "cuda" if torch.cuda.is_available() else "cpu"
205
+ >>> model = AutoModelForImageTextToText.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", device_map=device)
206
+ >>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf")
207
 
208
  >>> image = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/sheet_music.png"
209
  >>> inputs = processor(image, return_tensors="pt", format=True).to(device)