2023-10-20 09:41:09,199 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:41:09,200 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(32001, 128) (position_embeddings): Embedding(512, 128) (token_type_embeddings): Embedding(2, 128) (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0-1): 2 x BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=128, out_features=128, bias=True) (key): Linear(in_features=128, out_features=128, bias=True) (value): Linear(in_features=128, out_features=128, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=128, out_features=128, bias=True) (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=128, out_features=512, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=512, out_features=128, bias=True) (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=128, out_features=128, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=128, out_features=13, bias=True) (loss_function): CrossEntropyLoss() )" 2023-10-20 09:41:09,200 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:41:09,200 MultiCorpus: 6183 train + 680 dev + 2113 test sentences - NER_HIPE_2022 Corpus: 6183 train + 680 dev + 2113 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/topres19th/en/with_doc_seperator 2023-10-20 09:41:09,200 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:41:09,200 Train: 6183 sentences 2023-10-20 09:41:09,200 (train_with_dev=False, train_with_test=False) 2023-10-20 09:41:09,200 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:41:09,200 Training Params: 2023-10-20 09:41:09,200 - learning_rate: "5e-05" 2023-10-20 09:41:09,200 - mini_batch_size: "4" 2023-10-20 09:41:09,200 - max_epochs: "10" 2023-10-20 09:41:09,200 - shuffle: "True" 2023-10-20 09:41:09,200 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:41:09,200 Plugins: 2023-10-20 09:41:09,200 - TensorboardLogger 2023-10-20 09:41:09,200 - LinearScheduler | warmup_fraction: '0.1' 2023-10-20 09:41:09,200 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:41:09,200 Final evaluation on model from best epoch (best-model.pt) 2023-10-20 09:41:09,200 - metric: "('micro avg', 'f1-score')" 2023-10-20 09:41:09,200 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:41:09,200 Computation: 2023-10-20 09:41:09,200 - compute on device: cuda:0 2023-10-20 09:41:09,200 - embedding storage: none 2023-10-20 09:41:09,200 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:41:09,200 Model training base path: "hmbench-topres19th/en-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3" 2023-10-20 09:41:09,201 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:41:09,201 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:41:09,201 Logging anything other than scalars to TensorBoard is currently not supported. 2023-10-20 09:41:11,581 epoch 1 - iter 154/1546 - loss 2.73201796 - time (sec): 2.38 - samples/sec: 5211.62 - lr: 0.000005 - momentum: 0.000000 2023-10-20 09:41:13,997 epoch 1 - iter 308/1546 - loss 2.28602428 - time (sec): 4.80 - samples/sec: 5370.04 - lr: 0.000010 - momentum: 0.000000 2023-10-20 09:41:16,612 epoch 1 - iter 462/1546 - loss 1.80447606 - time (sec): 7.41 - samples/sec: 5025.78 - lr: 0.000015 - momentum: 0.000000 2023-10-20 09:41:19,191 epoch 1 - iter 616/1546 - loss 1.45860759 - time (sec): 9.99 - samples/sec: 4859.62 - lr: 0.000020 - momentum: 0.000000 2023-10-20 09:41:21,393 epoch 1 - iter 770/1546 - loss 1.21626669 - time (sec): 12.19 - samples/sec: 4991.92 - lr: 0.000025 - momentum: 0.000000 2023-10-20 09:41:23,508 epoch 1 - iter 924/1546 - loss 1.05743701 - time (sec): 14.31 - samples/sec: 5116.89 - lr: 0.000030 - momentum: 0.000000 2023-10-20 09:41:25,915 epoch 1 - iter 1078/1546 - loss 0.93364531 - time (sec): 16.71 - samples/sec: 5203.28 - lr: 0.000035 - momentum: 0.000000 2023-10-20 09:41:28,282 epoch 1 - iter 1232/1546 - loss 0.85352136 - time (sec): 19.08 - samples/sec: 5178.04 - lr: 0.000040 - momentum: 0.000000 2023-10-20 09:41:30,632 epoch 1 - iter 1386/1546 - loss 0.78183431 - time (sec): 21.43 - samples/sec: 5187.56 - lr: 0.000045 - momentum: 0.000000 2023-10-20 09:41:32,915 epoch 1 - iter 1540/1546 - loss 0.72103837 - time (sec): 23.71 - samples/sec: 5221.53 - lr: 0.000050 - momentum: 0.000000 2023-10-20 09:41:33,007 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:41:33,008 EPOCH 1 done: loss 0.7187 - lr: 0.000050 2023-10-20 09:41:33,999 DEV : loss 0.12611015141010284 - f1-score (micro avg) 0.0923 2023-10-20 09:41:34,010 saving best model 2023-10-20 09:41:34,039 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:41:36,381 epoch 2 - iter 154/1546 - loss 0.19147722 - time (sec): 2.34 - samples/sec: 5814.62 - lr: 0.000049 - momentum: 0.000000 2023-10-20 09:41:38,793 epoch 2 - iter 308/1546 - loss 0.18883533 - time (sec): 4.75 - samples/sec: 5458.41 - lr: 0.000049 - momentum: 0.000000 2023-10-20 09:41:41,367 epoch 2 - iter 462/1546 - loss 0.19117660 - time (sec): 7.33 - samples/sec: 5234.09 - lr: 0.000048 - momentum: 0.000000 2023-10-20 09:41:43,731 epoch 2 - iter 616/1546 - loss 0.18776788 - time (sec): 9.69 - samples/sec: 5212.68 - lr: 0.000048 - momentum: 0.000000 2023-10-20 09:41:46,014 epoch 2 - iter 770/1546 - loss 0.19099004 - time (sec): 11.98 - samples/sec: 5248.49 - lr: 0.000047 - momentum: 0.000000 2023-10-20 09:41:48,419 epoch 2 - iter 924/1546 - loss 0.18616969 - time (sec): 14.38 - samples/sec: 5262.06 - lr: 0.000047 - momentum: 0.000000 2023-10-20 09:41:50,714 epoch 2 - iter 1078/1546 - loss 0.18577369 - time (sec): 16.67 - samples/sec: 5266.37 - lr: 0.000046 - momentum: 0.000000 2023-10-20 09:41:53,055 epoch 2 - iter 1232/1546 - loss 0.18463930 - time (sec): 19.02 - samples/sec: 5225.70 - lr: 0.000046 - momentum: 0.000000 2023-10-20 09:41:55,521 epoch 2 - iter 1386/1546 - loss 0.18415167 - time (sec): 21.48 - samples/sec: 5196.25 - lr: 0.000045 - momentum: 0.000000 2023-10-20 09:41:57,913 epoch 2 - iter 1540/1546 - loss 0.18017139 - time (sec): 23.87 - samples/sec: 5186.12 - lr: 0.000044 - momentum: 0.000000 2023-10-20 09:41:58,001 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:41:58,002 EPOCH 2 done: loss 0.1802 - lr: 0.000044 2023-10-20 09:41:59,100 DEV : loss 0.09276499599218369 - f1-score (micro avg) 0.463 2023-10-20 09:41:59,115 saving best model 2023-10-20 09:41:59,156 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:42:01,495 epoch 3 - iter 154/1546 - loss 0.17659999 - time (sec): 2.34 - samples/sec: 4765.94 - lr: 0.000044 - momentum: 0.000000 2023-10-20 09:42:03,992 epoch 3 - iter 308/1546 - loss 0.15431148 - time (sec): 4.84 - samples/sec: 5034.38 - lr: 0.000043 - momentum: 0.000000 2023-10-20 09:42:06,185 epoch 3 - iter 462/1546 - loss 0.15873776 - time (sec): 7.03 - samples/sec: 5224.34 - lr: 0.000043 - momentum: 0.000000 2023-10-20 09:42:08,363 epoch 3 - iter 616/1546 - loss 0.15154501 - time (sec): 9.21 - samples/sec: 5250.01 - lr: 0.000042 - momentum: 0.000000 2023-10-20 09:42:10,521 epoch 3 - iter 770/1546 - loss 0.15058689 - time (sec): 11.36 - samples/sec: 5370.97 - lr: 0.000042 - momentum: 0.000000 2023-10-20 09:42:12,875 epoch 3 - iter 924/1546 - loss 0.14854044 - time (sec): 13.72 - samples/sec: 5401.12 - lr: 0.000041 - momentum: 0.000000 2023-10-20 09:42:15,237 epoch 3 - iter 1078/1546 - loss 0.14970216 - time (sec): 16.08 - samples/sec: 5374.95 - lr: 0.000041 - momentum: 0.000000 2023-10-20 09:42:17,568 epoch 3 - iter 1232/1546 - loss 0.15198622 - time (sec): 18.41 - samples/sec: 5357.42 - lr: 0.000040 - momentum: 0.000000 2023-10-20 09:42:19,976 epoch 3 - iter 1386/1546 - loss 0.15043598 - time (sec): 20.82 - samples/sec: 5361.18 - lr: 0.000039 - momentum: 0.000000 2023-10-20 09:42:22,330 epoch 3 - iter 1540/1546 - loss 0.15010108 - time (sec): 23.17 - samples/sec: 5342.90 - lr: 0.000039 - momentum: 0.000000 2023-10-20 09:42:22,421 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:42:22,421 EPOCH 3 done: loss 0.1507 - lr: 0.000039 2023-10-20 09:42:23,519 DEV : loss 0.09011607617139816 - f1-score (micro avg) 0.5241 2023-10-20 09:42:23,531 saving best model 2023-10-20 09:42:23,572 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:42:26,002 epoch 4 - iter 154/1546 - loss 0.13234173 - time (sec): 2.43 - samples/sec: 5609.47 - lr: 0.000038 - momentum: 0.000000 2023-10-20 09:42:28,290 epoch 4 - iter 308/1546 - loss 0.13714759 - time (sec): 4.72 - samples/sec: 5340.94 - lr: 0.000038 - momentum: 0.000000 2023-10-20 09:42:30,599 epoch 4 - iter 462/1546 - loss 0.12728020 - time (sec): 7.03 - samples/sec: 5327.92 - lr: 0.000037 - momentum: 0.000000 2023-10-20 09:42:32,941 epoch 4 - iter 616/1546 - loss 0.13080542 - time (sec): 9.37 - samples/sec: 5291.06 - lr: 0.000037 - momentum: 0.000000 2023-10-20 09:42:35,381 epoch 4 - iter 770/1546 - loss 0.12845508 - time (sec): 11.81 - samples/sec: 5301.24 - lr: 0.000036 - momentum: 0.000000 2023-10-20 09:42:37,710 epoch 4 - iter 924/1546 - loss 0.13383808 - time (sec): 14.14 - samples/sec: 5289.52 - lr: 0.000036 - momentum: 0.000000 2023-10-20 09:42:40,090 epoch 4 - iter 1078/1546 - loss 0.13508658 - time (sec): 16.52 - samples/sec: 5292.52 - lr: 0.000035 - momentum: 0.000000 2023-10-20 09:42:42,510 epoch 4 - iter 1232/1546 - loss 0.13532445 - time (sec): 18.94 - samples/sec: 5289.66 - lr: 0.000034 - momentum: 0.000000 2023-10-20 09:42:44,865 epoch 4 - iter 1386/1546 - loss 0.13315587 - time (sec): 21.29 - samples/sec: 5283.64 - lr: 0.000034 - momentum: 0.000000 2023-10-20 09:42:47,186 epoch 4 - iter 1540/1546 - loss 0.13381815 - time (sec): 23.61 - samples/sec: 5244.78 - lr: 0.000033 - momentum: 0.000000 2023-10-20 09:42:47,277 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:42:47,277 EPOCH 4 done: loss 0.1337 - lr: 0.000033 2023-10-20 09:42:48,357 DEV : loss 0.09306028485298157 - f1-score (micro avg) 0.5244 2023-10-20 09:42:48,368 saving best model 2023-10-20 09:42:48,408 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:42:50,715 epoch 5 - iter 154/1546 - loss 0.11681683 - time (sec): 2.31 - samples/sec: 5404.86 - lr: 0.000033 - momentum: 0.000000 2023-10-20 09:42:52,960 epoch 5 - iter 308/1546 - loss 0.11485080 - time (sec): 4.55 - samples/sec: 5433.24 - lr: 0.000032 - momentum: 0.000000 2023-10-20 09:42:55,341 epoch 5 - iter 462/1546 - loss 0.12181429 - time (sec): 6.93 - samples/sec: 5293.09 - lr: 0.000032 - momentum: 0.000000 2023-10-20 09:42:57,788 epoch 5 - iter 616/1546 - loss 0.11977320 - time (sec): 9.38 - samples/sec: 5288.81 - lr: 0.000031 - momentum: 0.000000 2023-10-20 09:43:00,174 epoch 5 - iter 770/1546 - loss 0.11612074 - time (sec): 11.77 - samples/sec: 5309.53 - lr: 0.000031 - momentum: 0.000000 2023-10-20 09:43:02,601 epoch 5 - iter 924/1546 - loss 0.12322243 - time (sec): 14.19 - samples/sec: 5285.12 - lr: 0.000030 - momentum: 0.000000 2023-10-20 09:43:04,977 epoch 5 - iter 1078/1546 - loss 0.12454524 - time (sec): 16.57 - samples/sec: 5260.58 - lr: 0.000029 - momentum: 0.000000 2023-10-20 09:43:07,312 epoch 5 - iter 1232/1546 - loss 0.12565251 - time (sec): 18.90 - samples/sec: 5246.75 - lr: 0.000029 - momentum: 0.000000 2023-10-20 09:43:09,670 epoch 5 - iter 1386/1546 - loss 0.12496953 - time (sec): 21.26 - samples/sec: 5245.43 - lr: 0.000028 - momentum: 0.000000 2023-10-20 09:43:12,064 epoch 5 - iter 1540/1546 - loss 0.12186724 - time (sec): 23.66 - samples/sec: 5235.16 - lr: 0.000028 - momentum: 0.000000 2023-10-20 09:43:12,158 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:43:12,158 EPOCH 5 done: loss 0.1221 - lr: 0.000028 2023-10-20 09:43:13,241 DEV : loss 0.09604145586490631 - f1-score (micro avg) 0.5656 2023-10-20 09:43:13,254 saving best model 2023-10-20 09:43:13,286 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:43:15,726 epoch 6 - iter 154/1546 - loss 0.14501961 - time (sec): 2.44 - samples/sec: 5098.88 - lr: 0.000027 - momentum: 0.000000 2023-10-20 09:43:18,081 epoch 6 - iter 308/1546 - loss 0.12419256 - time (sec): 4.79 - samples/sec: 5241.47 - lr: 0.000027 - momentum: 0.000000 2023-10-20 09:43:20,410 epoch 6 - iter 462/1546 - loss 0.11952545 - time (sec): 7.12 - samples/sec: 5247.84 - lr: 0.000026 - momentum: 0.000000 2023-10-20 09:43:22,764 epoch 6 - iter 616/1546 - loss 0.12112158 - time (sec): 9.48 - samples/sec: 5154.77 - lr: 0.000026 - momentum: 0.000000 2023-10-20 09:43:25,146 epoch 6 - iter 770/1546 - loss 0.11804613 - time (sec): 11.86 - samples/sec: 5239.33 - lr: 0.000025 - momentum: 0.000000 2023-10-20 09:43:27,511 epoch 6 - iter 924/1546 - loss 0.11766846 - time (sec): 14.22 - samples/sec: 5215.77 - lr: 0.000024 - momentum: 0.000000 2023-10-20 09:43:29,890 epoch 6 - iter 1078/1546 - loss 0.11754179 - time (sec): 16.60 - samples/sec: 5214.73 - lr: 0.000024 - momentum: 0.000000 2023-10-20 09:43:32,248 epoch 6 - iter 1232/1546 - loss 0.11564541 - time (sec): 18.96 - samples/sec: 5218.61 - lr: 0.000023 - momentum: 0.000000 2023-10-20 09:43:34,677 epoch 6 - iter 1386/1546 - loss 0.11640739 - time (sec): 21.39 - samples/sec: 5238.26 - lr: 0.000023 - momentum: 0.000000 2023-10-20 09:43:36,968 epoch 6 - iter 1540/1546 - loss 0.11549879 - time (sec): 23.68 - samples/sec: 5228.42 - lr: 0.000022 - momentum: 0.000000 2023-10-20 09:43:37,050 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:43:37,050 EPOCH 6 done: loss 0.1151 - lr: 0.000022 2023-10-20 09:43:38,136 DEV : loss 0.10433212667703629 - f1-score (micro avg) 0.5727 2023-10-20 09:43:38,149 saving best model 2023-10-20 09:43:38,190 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:43:40,570 epoch 7 - iter 154/1546 - loss 0.12205843 - time (sec): 2.38 - samples/sec: 5053.28 - lr: 0.000022 - momentum: 0.000000 2023-10-20 09:43:42,919 epoch 7 - iter 308/1546 - loss 0.10630383 - time (sec): 4.73 - samples/sec: 5325.75 - lr: 0.000021 - momentum: 0.000000 2023-10-20 09:43:45,240 epoch 7 - iter 462/1546 - loss 0.11247321 - time (sec): 7.05 - samples/sec: 5240.98 - lr: 0.000021 - momentum: 0.000000 2023-10-20 09:43:47,691 epoch 7 - iter 616/1546 - loss 0.10731717 - time (sec): 9.50 - samples/sec: 5238.98 - lr: 0.000020 - momentum: 0.000000 2023-10-20 09:43:50,026 epoch 7 - iter 770/1546 - loss 0.10659080 - time (sec): 11.84 - samples/sec: 5134.02 - lr: 0.000019 - momentum: 0.000000 2023-10-20 09:43:52,380 epoch 7 - iter 924/1546 - loss 0.10675804 - time (sec): 14.19 - samples/sec: 5129.08 - lr: 0.000019 - momentum: 0.000000 2023-10-20 09:43:54,757 epoch 7 - iter 1078/1546 - loss 0.10617289 - time (sec): 16.57 - samples/sec: 5171.36 - lr: 0.000018 - momentum: 0.000000 2023-10-20 09:43:57,215 epoch 7 - iter 1232/1546 - loss 0.10595788 - time (sec): 19.02 - samples/sec: 5179.16 - lr: 0.000018 - momentum: 0.000000 2023-10-20 09:43:59,544 epoch 7 - iter 1386/1546 - loss 0.10475076 - time (sec): 21.35 - samples/sec: 5221.19 - lr: 0.000017 - momentum: 0.000000 2023-10-20 09:44:01,661 epoch 7 - iter 1540/1546 - loss 0.10684330 - time (sec): 23.47 - samples/sec: 5274.67 - lr: 0.000017 - momentum: 0.000000 2023-10-20 09:44:01,740 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:44:01,741 EPOCH 7 done: loss 0.1067 - lr: 0.000017 2023-10-20 09:44:02,845 DEV : loss 0.10244878381490707 - f1-score (micro avg) 0.5978 2023-10-20 09:44:02,858 saving best model 2023-10-20 09:44:02,900 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:44:05,137 epoch 8 - iter 154/1546 - loss 0.07782089 - time (sec): 2.24 - samples/sec: 5379.85 - lr: 0.000016 - momentum: 0.000000 2023-10-20 09:44:07,488 epoch 8 - iter 308/1546 - loss 0.09938386 - time (sec): 4.59 - samples/sec: 5205.84 - lr: 0.000016 - momentum: 0.000000 2023-10-20 09:44:09,760 epoch 8 - iter 462/1546 - loss 0.10503251 - time (sec): 6.86 - samples/sec: 5325.75 - lr: 0.000015 - momentum: 0.000000 2023-10-20 09:44:12,071 epoch 8 - iter 616/1546 - loss 0.09702954 - time (sec): 9.17 - samples/sec: 5452.15 - lr: 0.000014 - momentum: 0.000000 2023-10-20 09:44:14,469 epoch 8 - iter 770/1546 - loss 0.09883319 - time (sec): 11.57 - samples/sec: 5429.20 - lr: 0.000014 - momentum: 0.000000 2023-10-20 09:44:16,911 epoch 8 - iter 924/1546 - loss 0.10089289 - time (sec): 14.01 - samples/sec: 5368.77 - lr: 0.000013 - momentum: 0.000000 2023-10-20 09:44:19,253 epoch 8 - iter 1078/1546 - loss 0.10490967 - time (sec): 16.35 - samples/sec: 5317.93 - lr: 0.000013 - momentum: 0.000000 2023-10-20 09:44:21,864 epoch 8 - iter 1232/1546 - loss 0.10403049 - time (sec): 18.96 - samples/sec: 5252.66 - lr: 0.000012 - momentum: 0.000000 2023-10-20 09:44:24,326 epoch 8 - iter 1386/1546 - loss 0.10516244 - time (sec): 21.43 - samples/sec: 5188.95 - lr: 0.000012 - momentum: 0.000000 2023-10-20 09:44:26,789 epoch 8 - iter 1540/1546 - loss 0.10342984 - time (sec): 23.89 - samples/sec: 5181.70 - lr: 0.000011 - momentum: 0.000000 2023-10-20 09:44:26,877 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:44:26,878 EPOCH 8 done: loss 0.1032 - lr: 0.000011 2023-10-20 09:44:27,986 DEV : loss 0.10922187566757202 - f1-score (micro avg) 0.6057 2023-10-20 09:44:27,998 saving best model 2023-10-20 09:44:28,038 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:44:30,360 epoch 9 - iter 154/1546 - loss 0.08640753 - time (sec): 2.32 - samples/sec: 5049.90 - lr: 0.000011 - momentum: 0.000000 2023-10-20 09:44:32,771 epoch 9 - iter 308/1546 - loss 0.10139803 - time (sec): 4.73 - samples/sec: 5185.55 - lr: 0.000010 - momentum: 0.000000 2023-10-20 09:44:35,161 epoch 9 - iter 462/1546 - loss 0.10459999 - time (sec): 7.12 - samples/sec: 5147.67 - lr: 0.000009 - momentum: 0.000000 2023-10-20 09:44:37,562 epoch 9 - iter 616/1546 - loss 0.10331605 - time (sec): 9.52 - samples/sec: 5178.00 - lr: 0.000009 - momentum: 0.000000 2023-10-20 09:44:39,934 epoch 9 - iter 770/1546 - loss 0.10432797 - time (sec): 11.90 - samples/sec: 5263.07 - lr: 0.000008 - momentum: 0.000000 2023-10-20 09:44:42,272 epoch 9 - iter 924/1546 - loss 0.10164891 - time (sec): 14.23 - samples/sec: 5224.54 - lr: 0.000008 - momentum: 0.000000 2023-10-20 09:44:44,608 epoch 9 - iter 1078/1546 - loss 0.10042381 - time (sec): 16.57 - samples/sec: 5216.95 - lr: 0.000007 - momentum: 0.000000 2023-10-20 09:44:47,009 epoch 9 - iter 1232/1546 - loss 0.09913846 - time (sec): 18.97 - samples/sec: 5227.53 - lr: 0.000007 - momentum: 0.000000 2023-10-20 09:44:49,379 epoch 9 - iter 1386/1546 - loss 0.09843496 - time (sec): 21.34 - samples/sec: 5225.60 - lr: 0.000006 - momentum: 0.000000 2023-10-20 09:44:51,770 epoch 9 - iter 1540/1546 - loss 0.09869379 - time (sec): 23.73 - samples/sec: 5218.24 - lr: 0.000006 - momentum: 0.000000 2023-10-20 09:44:51,858 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:44:51,859 EPOCH 9 done: loss 0.0986 - lr: 0.000006 2023-10-20 09:44:52,949 DEV : loss 0.10991593450307846 - f1-score (micro avg) 0.6157 2023-10-20 09:44:52,962 saving best model 2023-10-20 09:44:52,995 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:44:55,276 epoch 10 - iter 154/1546 - loss 0.08007322 - time (sec): 2.28 - samples/sec: 5351.05 - lr: 0.000005 - momentum: 0.000000 2023-10-20 09:44:57,614 epoch 10 - iter 308/1546 - loss 0.07876762 - time (sec): 4.62 - samples/sec: 4959.39 - lr: 0.000004 - momentum: 0.000000 2023-10-20 09:45:00,139 epoch 10 - iter 462/1546 - loss 0.08637072 - time (sec): 7.14 - samples/sec: 5137.18 - lr: 0.000004 - momentum: 0.000000 2023-10-20 09:45:02,578 epoch 10 - iter 616/1546 - loss 0.09043747 - time (sec): 9.58 - samples/sec: 5157.41 - lr: 0.000003 - momentum: 0.000000 2023-10-20 09:45:04,930 epoch 10 - iter 770/1546 - loss 0.09135879 - time (sec): 11.93 - samples/sec: 5188.74 - lr: 0.000003 - momentum: 0.000000 2023-10-20 09:45:07,334 epoch 10 - iter 924/1546 - loss 0.09566442 - time (sec): 14.34 - samples/sec: 5196.85 - lr: 0.000002 - momentum: 0.000000 2023-10-20 09:45:09,778 epoch 10 - iter 1078/1546 - loss 0.09739706 - time (sec): 16.78 - samples/sec: 5147.91 - lr: 0.000002 - momentum: 0.000000 2023-10-20 09:45:12,353 epoch 10 - iter 1232/1546 - loss 0.09546748 - time (sec): 19.36 - samples/sec: 5149.80 - lr: 0.000001 - momentum: 0.000000 2023-10-20 09:45:14,711 epoch 10 - iter 1386/1546 - loss 0.09546014 - time (sec): 21.71 - samples/sec: 5127.46 - lr: 0.000001 - momentum: 0.000000 2023-10-20 09:45:17,110 epoch 10 - iter 1540/1546 - loss 0.09650173 - time (sec): 24.11 - samples/sec: 5137.09 - lr: 0.000000 - momentum: 0.000000 2023-10-20 09:45:17,203 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:45:17,203 EPOCH 10 done: loss 0.0964 - lr: 0.000000 2023-10-20 09:45:18,278 DEV : loss 0.11002404242753983 - f1-score (micro avg) 0.628 2023-10-20 09:45:18,291 saving best model 2023-10-20 09:45:18,358 ---------------------------------------------------------------------------------------------------- 2023-10-20 09:45:18,359 Loading model from best epoch ... 2023-10-20 09:45:18,432 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-BUILDING, B-BUILDING, E-BUILDING, I-BUILDING, S-STREET, B-STREET, E-STREET, I-STREET 2023-10-20 09:45:21,376 Results: - F-score (micro) 0.5802 - F-score (macro) 0.3927 - Accuracy 0.4193 By class: precision recall f1-score support LOC 0.6257 0.6681 0.6462 946 BUILDING 0.2710 0.1568 0.1986 185 STREET 0.7500 0.2143 0.3333 56 micro avg 0.5940 0.5670 0.5802 1187 macro avg 0.5489 0.3464 0.3927 1187 weighted avg 0.5763 0.5670 0.5617 1187 2023-10-20 09:45:21,376 ----------------------------------------------------------------------------------------------------