File size: 24,105 Bytes
57e4064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
2023-10-25 10:55:20,713 ----------------------------------------------------------------------------------------------------
2023-10-25 10:55:20,714 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(64001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=13, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-25 10:55:20,715 ----------------------------------------------------------------------------------------------------
2023-10-25 10:55:20,715 MultiCorpus: 6183 train + 680 dev + 2113 test sentences
 - NER_HIPE_2022 Corpus: 6183 train + 680 dev + 2113 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/topres19th/en/with_doc_seperator
2023-10-25 10:55:20,715 ----------------------------------------------------------------------------------------------------
2023-10-25 10:55:20,715 Train:  6183 sentences
2023-10-25 10:55:20,715         (train_with_dev=False, train_with_test=False)
2023-10-25 10:55:20,715 ----------------------------------------------------------------------------------------------------
2023-10-25 10:55:20,715 Training Params:
2023-10-25 10:55:20,715  - learning_rate: "3e-05" 
2023-10-25 10:55:20,715  - mini_batch_size: "4"
2023-10-25 10:55:20,715  - max_epochs: "10"
2023-10-25 10:55:20,715  - shuffle: "True"
2023-10-25 10:55:20,715 ----------------------------------------------------------------------------------------------------
2023-10-25 10:55:20,715 Plugins:
2023-10-25 10:55:20,715  - TensorboardLogger
2023-10-25 10:55:20,715  - LinearScheduler | warmup_fraction: '0.1'
2023-10-25 10:55:20,715 ----------------------------------------------------------------------------------------------------
2023-10-25 10:55:20,715 Final evaluation on model from best epoch (best-model.pt)
2023-10-25 10:55:20,715  - metric: "('micro avg', 'f1-score')"
2023-10-25 10:55:20,715 ----------------------------------------------------------------------------------------------------
2023-10-25 10:55:20,716 Computation:
2023-10-25 10:55:20,716  - compute on device: cuda:0
2023-10-25 10:55:20,716  - embedding storage: none
2023-10-25 10:55:20,716 ----------------------------------------------------------------------------------------------------
2023-10-25 10:55:20,716 Model training base path: "hmbench-topres19th/en-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-25 10:55:20,716 ----------------------------------------------------------------------------------------------------
2023-10-25 10:55:20,716 ----------------------------------------------------------------------------------------------------
2023-10-25 10:55:20,716 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-25 10:55:28,912 epoch 1 - iter 154/1546 - loss 1.65969452 - time (sec): 8.20 - samples/sec: 1555.63 - lr: 0.000003 - momentum: 0.000000
2023-10-25 10:55:36,950 epoch 1 - iter 308/1546 - loss 0.93754585 - time (sec): 16.23 - samples/sec: 1534.93 - lr: 0.000006 - momentum: 0.000000
2023-10-25 10:55:44,983 epoch 1 - iter 462/1546 - loss 0.68571099 - time (sec): 24.27 - samples/sec: 1522.86 - lr: 0.000009 - momentum: 0.000000
2023-10-25 10:55:53,052 epoch 1 - iter 616/1546 - loss 0.54254456 - time (sec): 32.33 - samples/sec: 1540.72 - lr: 0.000012 - momentum: 0.000000
2023-10-25 10:56:01,033 epoch 1 - iter 770/1546 - loss 0.45649672 - time (sec): 40.32 - samples/sec: 1542.76 - lr: 0.000015 - momentum: 0.000000
2023-10-25 10:56:09,335 epoch 1 - iter 924/1546 - loss 0.40353128 - time (sec): 48.62 - samples/sec: 1521.17 - lr: 0.000018 - momentum: 0.000000
2023-10-25 10:56:17,417 epoch 1 - iter 1078/1546 - loss 0.36171769 - time (sec): 56.70 - samples/sec: 1531.40 - lr: 0.000021 - momentum: 0.000000
2023-10-25 10:56:25,605 epoch 1 - iter 1232/1546 - loss 0.32774519 - time (sec): 64.89 - samples/sec: 1535.03 - lr: 0.000024 - momentum: 0.000000
2023-10-25 10:56:33,774 epoch 1 - iter 1386/1546 - loss 0.30231800 - time (sec): 73.06 - samples/sec: 1531.32 - lr: 0.000027 - momentum: 0.000000
2023-10-25 10:56:41,853 epoch 1 - iter 1540/1546 - loss 0.28338013 - time (sec): 81.14 - samples/sec: 1526.05 - lr: 0.000030 - momentum: 0.000000
2023-10-25 10:56:42,169 ----------------------------------------------------------------------------------------------------
2023-10-25 10:56:42,170 EPOCH 1 done: loss 0.2827 - lr: 0.000030
2023-10-25 10:56:45,326 DEV : loss 0.062169428914785385 - f1-score (micro avg)  0.7459
2023-10-25 10:56:45,343 saving best model
2023-10-25 10:56:45,846 ----------------------------------------------------------------------------------------------------
2023-10-25 10:56:53,944 epoch 2 - iter 154/1546 - loss 0.08228178 - time (sec): 8.10 - samples/sec: 1517.82 - lr: 0.000030 - momentum: 0.000000
2023-10-25 10:57:02,045 epoch 2 - iter 308/1546 - loss 0.09250857 - time (sec): 16.20 - samples/sec: 1529.83 - lr: 0.000029 - momentum: 0.000000
2023-10-25 10:57:10,520 epoch 2 - iter 462/1546 - loss 0.09380708 - time (sec): 24.67 - samples/sec: 1461.41 - lr: 0.000029 - momentum: 0.000000
2023-10-25 10:57:18,800 epoch 2 - iter 616/1546 - loss 0.09259481 - time (sec): 32.95 - samples/sec: 1485.60 - lr: 0.000029 - momentum: 0.000000
2023-10-25 10:57:27,133 epoch 2 - iter 770/1546 - loss 0.08939337 - time (sec): 41.29 - samples/sec: 1492.76 - lr: 0.000028 - momentum: 0.000000
2023-10-25 10:57:35,482 epoch 2 - iter 924/1546 - loss 0.08678052 - time (sec): 49.63 - samples/sec: 1496.72 - lr: 0.000028 - momentum: 0.000000
2023-10-25 10:57:43,622 epoch 2 - iter 1078/1546 - loss 0.08519177 - time (sec): 57.77 - samples/sec: 1506.85 - lr: 0.000028 - momentum: 0.000000
2023-10-25 10:57:51,769 epoch 2 - iter 1232/1546 - loss 0.08376653 - time (sec): 65.92 - samples/sec: 1497.63 - lr: 0.000027 - momentum: 0.000000
2023-10-25 10:58:00,015 epoch 2 - iter 1386/1546 - loss 0.08475831 - time (sec): 74.17 - samples/sec: 1489.46 - lr: 0.000027 - momentum: 0.000000
2023-10-25 10:58:08,149 epoch 2 - iter 1540/1546 - loss 0.08472997 - time (sec): 82.30 - samples/sec: 1503.75 - lr: 0.000027 - momentum: 0.000000
2023-10-25 10:58:08,448 ----------------------------------------------------------------------------------------------------
2023-10-25 10:58:08,449 EPOCH 2 done: loss 0.0846 - lr: 0.000027
2023-10-25 10:58:11,612 DEV : loss 0.07261277735233307 - f1-score (micro avg)  0.7277
2023-10-25 10:58:11,628 ----------------------------------------------------------------------------------------------------
2023-10-25 10:58:19,774 epoch 3 - iter 154/1546 - loss 0.05836815 - time (sec): 8.14 - samples/sec: 1498.97 - lr: 0.000026 - momentum: 0.000000
2023-10-25 10:58:27,451 epoch 3 - iter 308/1546 - loss 0.05750916 - time (sec): 15.82 - samples/sec: 1507.96 - lr: 0.000026 - momentum: 0.000000
2023-10-25 10:58:35,457 epoch 3 - iter 462/1546 - loss 0.05789807 - time (sec): 23.83 - samples/sec: 1501.32 - lr: 0.000026 - momentum: 0.000000
2023-10-25 10:58:43,631 epoch 3 - iter 616/1546 - loss 0.05366765 - time (sec): 32.00 - samples/sec: 1510.95 - lr: 0.000025 - momentum: 0.000000
2023-10-25 10:58:51,877 epoch 3 - iter 770/1546 - loss 0.05391996 - time (sec): 40.25 - samples/sec: 1503.99 - lr: 0.000025 - momentum: 0.000000
2023-10-25 10:59:00,343 epoch 3 - iter 924/1546 - loss 0.05489213 - time (sec): 48.71 - samples/sec: 1510.07 - lr: 0.000025 - momentum: 0.000000
2023-10-25 10:59:08,613 epoch 3 - iter 1078/1546 - loss 0.05440378 - time (sec): 56.98 - samples/sec: 1510.99 - lr: 0.000024 - momentum: 0.000000
2023-10-25 10:59:16,017 epoch 3 - iter 1232/1546 - loss 0.05523524 - time (sec): 64.39 - samples/sec: 1533.04 - lr: 0.000024 - momentum: 0.000000
2023-10-25 10:59:23,782 epoch 3 - iter 1386/1546 - loss 0.05498877 - time (sec): 72.15 - samples/sec: 1546.14 - lr: 0.000024 - momentum: 0.000000
2023-10-25 10:59:31,809 epoch 3 - iter 1540/1546 - loss 0.05337318 - time (sec): 80.18 - samples/sec: 1545.06 - lr: 0.000023 - momentum: 0.000000
2023-10-25 10:59:32,114 ----------------------------------------------------------------------------------------------------
2023-10-25 10:59:32,114 EPOCH 3 done: loss 0.0533 - lr: 0.000023
2023-10-25 10:59:34,713 DEV : loss 0.09182113409042358 - f1-score (micro avg)  0.7679
2023-10-25 10:59:34,735 saving best model
2023-10-25 10:59:35,483 ----------------------------------------------------------------------------------------------------
2023-10-25 10:59:43,457 epoch 4 - iter 154/1546 - loss 0.02507648 - time (sec): 7.97 - samples/sec: 1565.78 - lr: 0.000023 - momentum: 0.000000
2023-10-25 10:59:51,780 epoch 4 - iter 308/1546 - loss 0.03175758 - time (sec): 16.29 - samples/sec: 1550.68 - lr: 0.000023 - momentum: 0.000000
2023-10-25 10:59:59,992 epoch 4 - iter 462/1546 - loss 0.03194911 - time (sec): 24.51 - samples/sec: 1540.95 - lr: 0.000022 - momentum: 0.000000
2023-10-25 11:00:08,358 epoch 4 - iter 616/1546 - loss 0.03245614 - time (sec): 32.87 - samples/sec: 1530.37 - lr: 0.000022 - momentum: 0.000000
2023-10-25 11:00:16,776 epoch 4 - iter 770/1546 - loss 0.03363787 - time (sec): 41.29 - samples/sec: 1507.55 - lr: 0.000022 - momentum: 0.000000
2023-10-25 11:00:25,086 epoch 4 - iter 924/1546 - loss 0.03411037 - time (sec): 49.60 - samples/sec: 1494.55 - lr: 0.000021 - momentum: 0.000000
2023-10-25 11:00:33,183 epoch 4 - iter 1078/1546 - loss 0.03460341 - time (sec): 57.70 - samples/sec: 1505.14 - lr: 0.000021 - momentum: 0.000000
2023-10-25 11:00:41,566 epoch 4 - iter 1232/1546 - loss 0.03464367 - time (sec): 66.08 - samples/sec: 1507.10 - lr: 0.000021 - momentum: 0.000000
2023-10-25 11:00:50,390 epoch 4 - iter 1386/1546 - loss 0.03534451 - time (sec): 74.90 - samples/sec: 1499.75 - lr: 0.000020 - momentum: 0.000000
2023-10-25 11:00:59,048 epoch 4 - iter 1540/1546 - loss 0.03677995 - time (sec): 83.56 - samples/sec: 1481.68 - lr: 0.000020 - momentum: 0.000000
2023-10-25 11:00:59,372 ----------------------------------------------------------------------------------------------------
2023-10-25 11:00:59,372 EPOCH 4 done: loss 0.0367 - lr: 0.000020
2023-10-25 11:01:02,425 DEV : loss 0.09009607881307602 - f1-score (micro avg)  0.7484
2023-10-25 11:01:02,448 ----------------------------------------------------------------------------------------------------
2023-10-25 11:01:11,044 epoch 5 - iter 154/1546 - loss 0.02548701 - time (sec): 8.59 - samples/sec: 1432.16 - lr: 0.000020 - momentum: 0.000000
2023-10-25 11:01:19,545 epoch 5 - iter 308/1546 - loss 0.02652036 - time (sec): 17.10 - samples/sec: 1443.33 - lr: 0.000019 - momentum: 0.000000
2023-10-25 11:01:28,336 epoch 5 - iter 462/1546 - loss 0.02539993 - time (sec): 25.89 - samples/sec: 1452.56 - lr: 0.000019 - momentum: 0.000000
2023-10-25 11:01:36,776 epoch 5 - iter 616/1546 - loss 0.02612452 - time (sec): 34.33 - samples/sec: 1449.22 - lr: 0.000019 - momentum: 0.000000
2023-10-25 11:01:45,209 epoch 5 - iter 770/1546 - loss 0.02524168 - time (sec): 42.76 - samples/sec: 1466.66 - lr: 0.000018 - momentum: 0.000000
2023-10-25 11:01:53,861 epoch 5 - iter 924/1546 - loss 0.02572133 - time (sec): 51.41 - samples/sec: 1467.85 - lr: 0.000018 - momentum: 0.000000
2023-10-25 11:02:02,324 epoch 5 - iter 1078/1546 - loss 0.02424334 - time (sec): 59.87 - samples/sec: 1473.27 - lr: 0.000018 - momentum: 0.000000
2023-10-25 11:02:11,012 epoch 5 - iter 1232/1546 - loss 0.02389485 - time (sec): 68.56 - samples/sec: 1454.57 - lr: 0.000017 - momentum: 0.000000
2023-10-25 11:02:19,339 epoch 5 - iter 1386/1546 - loss 0.02362872 - time (sec): 76.89 - samples/sec: 1460.40 - lr: 0.000017 - momentum: 0.000000
2023-10-25 11:02:27,570 epoch 5 - iter 1540/1546 - loss 0.02429264 - time (sec): 85.12 - samples/sec: 1454.78 - lr: 0.000017 - momentum: 0.000000
2023-10-25 11:02:27,893 ----------------------------------------------------------------------------------------------------
2023-10-25 11:02:27,894 EPOCH 5 done: loss 0.0243 - lr: 0.000017
2023-10-25 11:02:30,998 DEV : loss 0.10089725255966187 - f1-score (micro avg)  0.7832
2023-10-25 11:02:31,025 saving best model
2023-10-25 11:02:31,719 ----------------------------------------------------------------------------------------------------
2023-10-25 11:02:40,219 epoch 6 - iter 154/1546 - loss 0.02003037 - time (sec): 8.50 - samples/sec: 1487.59 - lr: 0.000016 - momentum: 0.000000
2023-10-25 11:02:48,637 epoch 6 - iter 308/1546 - loss 0.02358693 - time (sec): 16.92 - samples/sec: 1486.16 - lr: 0.000016 - momentum: 0.000000
2023-10-25 11:02:57,000 epoch 6 - iter 462/1546 - loss 0.02117204 - time (sec): 25.28 - samples/sec: 1460.82 - lr: 0.000016 - momentum: 0.000000
2023-10-25 11:03:05,526 epoch 6 - iter 616/1546 - loss 0.02069151 - time (sec): 33.80 - samples/sec: 1472.70 - lr: 0.000015 - momentum: 0.000000
2023-10-25 11:03:13,317 epoch 6 - iter 770/1546 - loss 0.02110916 - time (sec): 41.60 - samples/sec: 1516.05 - lr: 0.000015 - momentum: 0.000000
2023-10-25 11:03:20,828 epoch 6 - iter 924/1546 - loss 0.01896075 - time (sec): 49.11 - samples/sec: 1543.87 - lr: 0.000015 - momentum: 0.000000
2023-10-25 11:03:28,603 epoch 6 - iter 1078/1546 - loss 0.01988098 - time (sec): 56.88 - samples/sec: 1544.66 - lr: 0.000014 - momentum: 0.000000
2023-10-25 11:03:36,263 epoch 6 - iter 1232/1546 - loss 0.01957224 - time (sec): 64.54 - samples/sec: 1543.12 - lr: 0.000014 - momentum: 0.000000
2023-10-25 11:03:43,921 epoch 6 - iter 1386/1546 - loss 0.01892299 - time (sec): 72.20 - samples/sec: 1547.68 - lr: 0.000014 - momentum: 0.000000
2023-10-25 11:03:51,944 epoch 6 - iter 1540/1546 - loss 0.01883330 - time (sec): 80.22 - samples/sec: 1544.46 - lr: 0.000013 - momentum: 0.000000
2023-10-25 11:03:52,223 ----------------------------------------------------------------------------------------------------
2023-10-25 11:03:52,223 EPOCH 6 done: loss 0.0188 - lr: 0.000013
2023-10-25 11:03:54,800 DEV : loss 0.11670850217342377 - f1-score (micro avg)  0.7555
2023-10-25 11:03:54,821 ----------------------------------------------------------------------------------------------------
2023-10-25 11:04:02,733 epoch 7 - iter 154/1546 - loss 0.01309731 - time (sec): 7.91 - samples/sec: 1610.31 - lr: 0.000013 - momentum: 0.000000
2023-10-25 11:04:10,327 epoch 7 - iter 308/1546 - loss 0.01392533 - time (sec): 15.50 - samples/sec: 1602.90 - lr: 0.000013 - momentum: 0.000000
2023-10-25 11:04:17,838 epoch 7 - iter 462/1546 - loss 0.01201188 - time (sec): 23.02 - samples/sec: 1683.89 - lr: 0.000012 - momentum: 0.000000
2023-10-25 11:04:25,232 epoch 7 - iter 616/1546 - loss 0.01294140 - time (sec): 30.41 - samples/sec: 1631.46 - lr: 0.000012 - momentum: 0.000000
2023-10-25 11:04:32,693 epoch 7 - iter 770/1546 - loss 0.01266465 - time (sec): 37.87 - samples/sec: 1633.04 - lr: 0.000012 - momentum: 0.000000
2023-10-25 11:04:40,354 epoch 7 - iter 924/1546 - loss 0.01178168 - time (sec): 45.53 - samples/sec: 1636.18 - lr: 0.000011 - momentum: 0.000000
2023-10-25 11:04:48,093 epoch 7 - iter 1078/1546 - loss 0.01250303 - time (sec): 53.27 - samples/sec: 1612.54 - lr: 0.000011 - momentum: 0.000000
2023-10-25 11:04:55,739 epoch 7 - iter 1232/1546 - loss 0.01293497 - time (sec): 60.92 - samples/sec: 1606.69 - lr: 0.000011 - momentum: 0.000000
2023-10-25 11:05:03,548 epoch 7 - iter 1386/1546 - loss 0.01307263 - time (sec): 68.72 - samples/sec: 1614.44 - lr: 0.000010 - momentum: 0.000000
2023-10-25 11:05:11,371 epoch 7 - iter 1540/1546 - loss 0.01279875 - time (sec): 76.55 - samples/sec: 1616.14 - lr: 0.000010 - momentum: 0.000000
2023-10-25 11:05:11,669 ----------------------------------------------------------------------------------------------------
2023-10-25 11:05:11,669 EPOCH 7 done: loss 0.0128 - lr: 0.000010
2023-10-25 11:05:15,197 DEV : loss 0.12019308656454086 - f1-score (micro avg)  0.7705
2023-10-25 11:05:15,216 ----------------------------------------------------------------------------------------------------
2023-10-25 11:05:23,412 epoch 8 - iter 154/1546 - loss 0.00807042 - time (sec): 8.19 - samples/sec: 1504.53 - lr: 0.000010 - momentum: 0.000000
2023-10-25 11:05:31,450 epoch 8 - iter 308/1546 - loss 0.00746783 - time (sec): 16.23 - samples/sec: 1529.78 - lr: 0.000009 - momentum: 0.000000
2023-10-25 11:05:39,597 epoch 8 - iter 462/1546 - loss 0.00860174 - time (sec): 24.38 - samples/sec: 1492.71 - lr: 0.000009 - momentum: 0.000000
2023-10-25 11:05:47,486 epoch 8 - iter 616/1546 - loss 0.00814822 - time (sec): 32.27 - samples/sec: 1505.31 - lr: 0.000009 - momentum: 0.000000
2023-10-25 11:05:55,271 epoch 8 - iter 770/1546 - loss 0.00790389 - time (sec): 40.05 - samples/sec: 1526.31 - lr: 0.000008 - momentum: 0.000000
2023-10-25 11:06:03,085 epoch 8 - iter 924/1546 - loss 0.00841588 - time (sec): 47.87 - samples/sec: 1555.20 - lr: 0.000008 - momentum: 0.000000
2023-10-25 11:06:10,637 epoch 8 - iter 1078/1546 - loss 0.00891299 - time (sec): 55.42 - samples/sec: 1569.17 - lr: 0.000008 - momentum: 0.000000
2023-10-25 11:06:18,161 epoch 8 - iter 1232/1546 - loss 0.00897866 - time (sec): 62.94 - samples/sec: 1575.65 - lr: 0.000007 - momentum: 0.000000
2023-10-25 11:06:26,204 epoch 8 - iter 1386/1546 - loss 0.00922351 - time (sec): 70.99 - samples/sec: 1566.90 - lr: 0.000007 - momentum: 0.000000
2023-10-25 11:06:34,371 epoch 8 - iter 1540/1546 - loss 0.00871974 - time (sec): 79.15 - samples/sec: 1563.32 - lr: 0.000007 - momentum: 0.000000
2023-10-25 11:06:34,699 ----------------------------------------------------------------------------------------------------
2023-10-25 11:06:34,700 EPOCH 8 done: loss 0.0087 - lr: 0.000007
2023-10-25 11:06:37,436 DEV : loss 0.11731629073619843 - f1-score (micro avg)  0.7885
2023-10-25 11:06:37,454 saving best model
2023-10-25 11:06:38,144 ----------------------------------------------------------------------------------------------------
2023-10-25 11:06:45,643 epoch 9 - iter 154/1546 - loss 0.00438247 - time (sec): 7.50 - samples/sec: 1680.48 - lr: 0.000006 - momentum: 0.000000
2023-10-25 11:06:52,902 epoch 9 - iter 308/1546 - loss 0.00372726 - time (sec): 14.76 - samples/sec: 1696.09 - lr: 0.000006 - momentum: 0.000000
2023-10-25 11:07:00,237 epoch 9 - iter 462/1546 - loss 0.00385813 - time (sec): 22.09 - samples/sec: 1693.20 - lr: 0.000006 - momentum: 0.000000
2023-10-25 11:07:07,380 epoch 9 - iter 616/1546 - loss 0.00377794 - time (sec): 29.23 - samples/sec: 1723.44 - lr: 0.000005 - momentum: 0.000000
2023-10-25 11:07:14,702 epoch 9 - iter 770/1546 - loss 0.00460608 - time (sec): 36.55 - samples/sec: 1714.33 - lr: 0.000005 - momentum: 0.000000
2023-10-25 11:07:22,280 epoch 9 - iter 924/1546 - loss 0.00436436 - time (sec): 44.13 - samples/sec: 1698.21 - lr: 0.000005 - momentum: 0.000000
2023-10-25 11:07:29,621 epoch 9 - iter 1078/1546 - loss 0.00482249 - time (sec): 51.47 - samples/sec: 1689.03 - lr: 0.000004 - momentum: 0.000000
2023-10-25 11:07:36,843 epoch 9 - iter 1232/1546 - loss 0.00450838 - time (sec): 58.70 - samples/sec: 1687.18 - lr: 0.000004 - momentum: 0.000000
2023-10-25 11:07:44,631 epoch 9 - iter 1386/1546 - loss 0.00440336 - time (sec): 66.48 - samples/sec: 1687.63 - lr: 0.000004 - momentum: 0.000000
2023-10-25 11:07:52,067 epoch 9 - iter 1540/1546 - loss 0.00411316 - time (sec): 73.92 - samples/sec: 1677.25 - lr: 0.000003 - momentum: 0.000000
2023-10-25 11:07:52,352 ----------------------------------------------------------------------------------------------------
2023-10-25 11:07:52,352 EPOCH 9 done: loss 0.0041 - lr: 0.000003
2023-10-25 11:07:54,893 DEV : loss 0.1307971030473709 - f1-score (micro avg)  0.7692
2023-10-25 11:07:54,916 ----------------------------------------------------------------------------------------------------
2023-10-25 11:08:02,148 epoch 10 - iter 154/1546 - loss 0.00204746 - time (sec): 7.23 - samples/sec: 1637.33 - lr: 0.000003 - momentum: 0.000000
2023-10-25 11:08:09,285 epoch 10 - iter 308/1546 - loss 0.00355914 - time (sec): 14.37 - samples/sec: 1636.15 - lr: 0.000003 - momentum: 0.000000
2023-10-25 11:08:16,545 epoch 10 - iter 462/1546 - loss 0.00381047 - time (sec): 21.63 - samples/sec: 1639.14 - lr: 0.000002 - momentum: 0.000000
2023-10-25 11:08:23,743 epoch 10 - iter 616/1546 - loss 0.00367323 - time (sec): 28.83 - samples/sec: 1655.86 - lr: 0.000002 - momentum: 0.000000
2023-10-25 11:08:31,133 epoch 10 - iter 770/1546 - loss 0.00339860 - time (sec): 36.22 - samples/sec: 1636.15 - lr: 0.000002 - momentum: 0.000000
2023-10-25 11:08:38,585 epoch 10 - iter 924/1546 - loss 0.00310024 - time (sec): 43.67 - samples/sec: 1652.22 - lr: 0.000001 - momentum: 0.000000
2023-10-25 11:08:46,049 epoch 10 - iter 1078/1546 - loss 0.00291881 - time (sec): 51.13 - samples/sec: 1664.18 - lr: 0.000001 - momentum: 0.000000
2023-10-25 11:08:53,576 epoch 10 - iter 1232/1546 - loss 0.00282386 - time (sec): 58.66 - samples/sec: 1675.15 - lr: 0.000001 - momentum: 0.000000
2023-10-25 11:09:01,133 epoch 10 - iter 1386/1546 - loss 0.00272207 - time (sec): 66.22 - samples/sec: 1680.98 - lr: 0.000000 - momentum: 0.000000
2023-10-25 11:09:08,863 epoch 10 - iter 1540/1546 - loss 0.00284420 - time (sec): 73.95 - samples/sec: 1671.06 - lr: 0.000000 - momentum: 0.000000
2023-10-25 11:09:09,151 ----------------------------------------------------------------------------------------------------
2023-10-25 11:09:09,151 EPOCH 10 done: loss 0.0029 - lr: 0.000000
2023-10-25 11:09:12,044 DEV : loss 0.13086602091789246 - f1-score (micro avg)  0.7695
2023-10-25 11:09:12,513 ----------------------------------------------------------------------------------------------------
2023-10-25 11:09:12,514 Loading model from best epoch ...
2023-10-25 11:09:14,434 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-BUILDING, B-BUILDING, E-BUILDING, I-BUILDING, S-STREET, B-STREET, E-STREET, I-STREET
2023-10-25 11:09:23,205 
Results:
- F-score (micro) 0.8064
- F-score (macro) 0.7186
- Accuracy 0.6987

By class:
              precision    recall  f1-score   support

         LOC     0.8493    0.8520    0.8507       946
    BUILDING     0.6020    0.6378    0.6194       185
      STREET     0.7347    0.6429    0.6857        56

   micro avg     0.8040    0.8088    0.8064      1187
   macro avg     0.7287    0.7109    0.7186      1187
weighted avg     0.8054    0.8088    0.8068      1187

2023-10-25 11:09:23,205 ----------------------------------------------------------------------------------------------------