Upload ./training.log with huggingface_hub
Browse files- training.log +242 -0
training.log
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-25 16:45:15,823 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-25 16:45:15,823 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-25 16:45:15,824 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-25 16:45:15,824 MultiCorpus: 20847 train + 1123 dev + 3350 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 20847 train + 1123 dev + 3350 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/de/with_doc_seperator
|
53 |
+
2023-10-25 16:45:15,824 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-25 16:45:15,824 Train: 20847 sentences
|
55 |
+
2023-10-25 16:45:15,824 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-25 16:45:15,824 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-25 16:45:15,824 Training Params:
|
58 |
+
2023-10-25 16:45:15,824 - learning_rate: "5e-05"
|
59 |
+
2023-10-25 16:45:15,824 - mini_batch_size: "8"
|
60 |
+
2023-10-25 16:45:15,824 - max_epochs: "10"
|
61 |
+
2023-10-25 16:45:15,824 - shuffle: "True"
|
62 |
+
2023-10-25 16:45:15,824 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-25 16:45:15,824 Plugins:
|
64 |
+
2023-10-25 16:45:15,824 - TensorboardLogger
|
65 |
+
2023-10-25 16:45:15,824 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-25 16:45:15,824 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-25 16:45:15,824 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-25 16:45:15,824 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-25 16:45:15,824 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-25 16:45:15,824 Computation:
|
71 |
+
2023-10-25 16:45:15,824 - compute on device: cuda:0
|
72 |
+
2023-10-25 16:45:15,824 - embedding storage: none
|
73 |
+
2023-10-25 16:45:15,824 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-25 16:45:15,824 Model training base path: "hmbench-newseye/de-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4"
|
75 |
+
2023-10-25 16:45:15,824 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-25 16:45:15,824 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-25 16:45:15,824 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-25 16:45:29,924 epoch 1 - iter 260/2606 - loss 1.44327200 - time (sec): 14.10 - samples/sec: 2479.77 - lr: 0.000005 - momentum: 0.000000
|
79 |
+
2023-10-25 16:45:44,833 epoch 1 - iter 520/2606 - loss 0.87020391 - time (sec): 29.01 - samples/sec: 2516.71 - lr: 0.000010 - momentum: 0.000000
|
80 |
+
2023-10-25 16:45:58,506 epoch 1 - iter 780/2606 - loss 0.67200000 - time (sec): 42.68 - samples/sec: 2488.08 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-10-25 16:46:12,807 epoch 1 - iter 1040/2606 - loss 0.56002942 - time (sec): 56.98 - samples/sec: 2552.72 - lr: 0.000020 - momentum: 0.000000
|
82 |
+
2023-10-25 16:46:27,006 epoch 1 - iter 1300/2606 - loss 0.48938374 - time (sec): 71.18 - samples/sec: 2564.16 - lr: 0.000025 - momentum: 0.000000
|
83 |
+
2023-10-25 16:46:40,890 epoch 1 - iter 1560/2606 - loss 0.43900299 - time (sec): 85.06 - samples/sec: 2585.58 - lr: 0.000030 - momentum: 0.000000
|
84 |
+
2023-10-25 16:46:55,169 epoch 1 - iter 1820/2606 - loss 0.39943791 - time (sec): 99.34 - samples/sec: 2600.59 - lr: 0.000035 - momentum: 0.000000
|
85 |
+
2023-10-25 16:47:09,222 epoch 1 - iter 2080/2606 - loss 0.37314820 - time (sec): 113.40 - samples/sec: 2595.66 - lr: 0.000040 - momentum: 0.000000
|
86 |
+
2023-10-25 16:47:23,358 epoch 1 - iter 2340/2606 - loss 0.35456131 - time (sec): 127.53 - samples/sec: 2592.17 - lr: 0.000045 - momentum: 0.000000
|
87 |
+
2023-10-25 16:47:37,439 epoch 1 - iter 2600/2606 - loss 0.33854746 - time (sec): 141.61 - samples/sec: 2592.16 - lr: 0.000050 - momentum: 0.000000
|
88 |
+
2023-10-25 16:47:37,706 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-25 16:47:37,707 EPOCH 1 done: loss 0.3387 - lr: 0.000050
|
90 |
+
2023-10-25 16:47:41,324 DEV : loss 0.118812695145607 - f1-score (micro avg) 0.1625
|
91 |
+
2023-10-25 16:47:41,349 saving best model
|
92 |
+
2023-10-25 16:47:41,819 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-25 16:47:55,809 epoch 2 - iter 260/2606 - loss 0.17564576 - time (sec): 13.99 - samples/sec: 2630.19 - lr: 0.000049 - momentum: 0.000000
|
94 |
+
2023-10-25 16:48:10,903 epoch 2 - iter 520/2606 - loss 0.16339489 - time (sec): 29.08 - samples/sec: 2633.99 - lr: 0.000049 - momentum: 0.000000
|
95 |
+
2023-10-25 16:48:25,129 epoch 2 - iter 780/2606 - loss 0.16367825 - time (sec): 43.31 - samples/sec: 2648.13 - lr: 0.000048 - momentum: 0.000000
|
96 |
+
2023-10-25 16:48:39,023 epoch 2 - iter 1040/2606 - loss 0.16465426 - time (sec): 57.20 - samples/sec: 2644.39 - lr: 0.000048 - momentum: 0.000000
|
97 |
+
2023-10-25 16:48:52,698 epoch 2 - iter 1300/2606 - loss 0.16691656 - time (sec): 70.88 - samples/sec: 2618.17 - lr: 0.000047 - momentum: 0.000000
|
98 |
+
2023-10-25 16:49:07,060 epoch 2 - iter 1560/2606 - loss 0.16504912 - time (sec): 85.24 - samples/sec: 2615.67 - lr: 0.000047 - momentum: 0.000000
|
99 |
+
2023-10-25 16:49:21,199 epoch 2 - iter 1820/2606 - loss 0.16040319 - time (sec): 99.38 - samples/sec: 2625.20 - lr: 0.000046 - momentum: 0.000000
|
100 |
+
2023-10-25 16:49:35,311 epoch 2 - iter 2080/2606 - loss 0.15902007 - time (sec): 113.49 - samples/sec: 2637.30 - lr: 0.000046 - momentum: 0.000000
|
101 |
+
2023-10-25 16:49:48,475 epoch 2 - iter 2340/2606 - loss 0.15709971 - time (sec): 126.65 - samples/sec: 2628.74 - lr: 0.000045 - momentum: 0.000000
|
102 |
+
2023-10-25 16:50:02,559 epoch 2 - iter 2600/2606 - loss 0.15647373 - time (sec): 140.74 - samples/sec: 2604.39 - lr: 0.000044 - momentum: 0.000000
|
103 |
+
2023-10-25 16:50:02,869 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-25 16:50:02,869 EPOCH 2 done: loss 0.1566 - lr: 0.000044
|
105 |
+
2023-10-25 16:50:09,872 DEV : loss 0.1611776500940323 - f1-score (micro avg) 0.3391
|
106 |
+
2023-10-25 16:50:09,896 saving best model
|
107 |
+
2023-10-25 16:50:10,500 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-25 16:50:24,874 epoch 3 - iter 260/2606 - loss 0.10670473 - time (sec): 14.37 - samples/sec: 2724.91 - lr: 0.000044 - momentum: 0.000000
|
109 |
+
2023-10-25 16:50:38,583 epoch 3 - iter 520/2606 - loss 0.10898329 - time (sec): 28.08 - samples/sec: 2706.78 - lr: 0.000043 - momentum: 0.000000
|
110 |
+
2023-10-25 16:50:52,379 epoch 3 - iter 780/2606 - loss 0.11166505 - time (sec): 41.88 - samples/sec: 2643.92 - lr: 0.000043 - momentum: 0.000000
|
111 |
+
2023-10-25 16:51:06,834 epoch 3 - iter 1040/2606 - loss 0.10939807 - time (sec): 56.33 - samples/sec: 2663.11 - lr: 0.000042 - momentum: 0.000000
|
112 |
+
2023-10-25 16:51:20,398 epoch 3 - iter 1300/2606 - loss 0.10997620 - time (sec): 69.90 - samples/sec: 2648.46 - lr: 0.000042 - momentum: 0.000000
|
113 |
+
2023-10-25 16:51:34,567 epoch 3 - iter 1560/2606 - loss 0.11114702 - time (sec): 84.07 - samples/sec: 2627.29 - lr: 0.000041 - momentum: 0.000000
|
114 |
+
2023-10-25 16:51:48,566 epoch 3 - iter 1820/2606 - loss 0.10915658 - time (sec): 98.06 - samples/sec: 2619.10 - lr: 0.000041 - momentum: 0.000000
|
115 |
+
2023-10-25 16:52:02,818 epoch 3 - iter 2080/2606 - loss 0.10966065 - time (sec): 112.32 - samples/sec: 2620.09 - lr: 0.000040 - momentum: 0.000000
|
116 |
+
2023-10-25 16:52:16,817 epoch 3 - iter 2340/2606 - loss 0.11109113 - time (sec): 126.31 - samples/sec: 2612.60 - lr: 0.000039 - momentum: 0.000000
|
117 |
+
2023-10-25 16:52:30,695 epoch 3 - iter 2600/2606 - loss 0.10926086 - time (sec): 140.19 - samples/sec: 2616.49 - lr: 0.000039 - momentum: 0.000000
|
118 |
+
2023-10-25 16:52:30,986 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-25 16:52:30,986 EPOCH 3 done: loss 0.1093 - lr: 0.000039
|
120 |
+
2023-10-25 16:52:38,212 DEV : loss 0.23014920949935913 - f1-score (micro avg) 0.3626
|
121 |
+
2023-10-25 16:52:38,236 saving best model
|
122 |
+
2023-10-25 16:52:38,689 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-25 16:52:52,399 epoch 4 - iter 260/2606 - loss 0.08026601 - time (sec): 13.71 - samples/sec: 2578.59 - lr: 0.000038 - momentum: 0.000000
|
124 |
+
2023-10-25 16:53:06,053 epoch 4 - iter 520/2606 - loss 0.07866155 - time (sec): 27.36 - samples/sec: 2540.99 - lr: 0.000038 - momentum: 0.000000
|
125 |
+
2023-10-25 16:53:20,595 epoch 4 - iter 780/2606 - loss 0.07694070 - time (sec): 41.90 - samples/sec: 2599.38 - lr: 0.000037 - momentum: 0.000000
|
126 |
+
2023-10-25 16:53:34,797 epoch 4 - iter 1040/2606 - loss 0.07572775 - time (sec): 56.11 - samples/sec: 2612.43 - lr: 0.000037 - momentum: 0.000000
|
127 |
+
2023-10-25 16:53:48,644 epoch 4 - iter 1300/2606 - loss 0.07947650 - time (sec): 69.95 - samples/sec: 2613.93 - lr: 0.000036 - momentum: 0.000000
|
128 |
+
2023-10-25 16:54:02,886 epoch 4 - iter 1560/2606 - loss 0.07880117 - time (sec): 84.20 - samples/sec: 2609.19 - lr: 0.000036 - momentum: 0.000000
|
129 |
+
2023-10-25 16:54:16,960 epoch 4 - iter 1820/2606 - loss 0.07887358 - time (sec): 98.27 - samples/sec: 2611.18 - lr: 0.000035 - momentum: 0.000000
|
130 |
+
2023-10-25 16:54:31,164 epoch 4 - iter 2080/2606 - loss 0.07742549 - time (sec): 112.47 - samples/sec: 2620.31 - lr: 0.000034 - momentum: 0.000000
|
131 |
+
2023-10-25 16:54:44,982 epoch 4 - iter 2340/2606 - loss 0.07826687 - time (sec): 126.29 - samples/sec: 2623.98 - lr: 0.000034 - momentum: 0.000000
|
132 |
+
2023-10-25 16:54:58,682 epoch 4 - iter 2600/2606 - loss 0.07860251 - time (sec): 139.99 - samples/sec: 2620.12 - lr: 0.000033 - momentum: 0.000000
|
133 |
+
2023-10-25 16:54:58,958 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-25 16:54:58,958 EPOCH 4 done: loss 0.0788 - lr: 0.000033
|
135 |
+
2023-10-25 16:55:05,179 DEV : loss 0.24600794911384583 - f1-score (micro avg) 0.358
|
136 |
+
2023-10-25 16:55:05,203 ----------------------------------------------------------------------------------------------------
|
137 |
+
2023-10-25 16:55:19,990 epoch 5 - iter 260/2606 - loss 0.05672130 - time (sec): 14.79 - samples/sec: 2594.82 - lr: 0.000033 - momentum: 0.000000
|
138 |
+
2023-10-25 16:55:34,219 epoch 5 - iter 520/2606 - loss 0.06166018 - time (sec): 29.01 - samples/sec: 2621.33 - lr: 0.000032 - momentum: 0.000000
|
139 |
+
2023-10-25 16:55:48,173 epoch 5 - iter 780/2606 - loss 0.06054051 - time (sec): 42.97 - samples/sec: 2619.67 - lr: 0.000032 - momentum: 0.000000
|
140 |
+
2023-10-25 16:56:02,180 epoch 5 - iter 1040/2606 - loss 0.05994699 - time (sec): 56.98 - samples/sec: 2592.31 - lr: 0.000031 - momentum: 0.000000
|
141 |
+
2023-10-25 16:56:16,341 epoch 5 - iter 1300/2606 - loss 0.06032593 - time (sec): 71.14 - samples/sec: 2605.83 - lr: 0.000031 - momentum: 0.000000
|
142 |
+
2023-10-25 16:56:30,625 epoch 5 - iter 1560/2606 - loss 0.05835629 - time (sec): 85.42 - samples/sec: 2598.27 - lr: 0.000030 - momentum: 0.000000
|
143 |
+
2023-10-25 16:56:44,827 epoch 5 - iter 1820/2606 - loss 0.06037339 - time (sec): 99.62 - samples/sec: 2592.66 - lr: 0.000029 - momentum: 0.000000
|
144 |
+
2023-10-25 16:56:58,661 epoch 5 - iter 2080/2606 - loss 0.05960227 - time (sec): 113.46 - samples/sec: 2600.76 - lr: 0.000029 - momentum: 0.000000
|
145 |
+
2023-10-25 16:57:11,848 epoch 5 - iter 2340/2606 - loss 0.05877380 - time (sec): 126.64 - samples/sec: 2617.27 - lr: 0.000028 - momentum: 0.000000
|
146 |
+
2023-10-25 16:57:26,094 epoch 5 - iter 2600/2606 - loss 0.05813652 - time (sec): 140.89 - samples/sec: 2605.23 - lr: 0.000028 - momentum: 0.000000
|
147 |
+
2023-10-25 16:57:26,431 ----------------------------------------------------------------------------------------------------
|
148 |
+
2023-10-25 16:57:26,431 EPOCH 5 done: loss 0.0581 - lr: 0.000028
|
149 |
+
2023-10-25 16:57:32,774 DEV : loss 0.29553988575935364 - f1-score (micro avg) 0.4099
|
150 |
+
2023-10-25 16:57:32,799 saving best model
|
151 |
+
2023-10-25 16:57:33,294 ----------------------------------------------------------------------------------------------------
|
152 |
+
2023-10-25 16:57:48,554 epoch 6 - iter 260/2606 - loss 0.04797258 - time (sec): 15.26 - samples/sec: 2573.89 - lr: 0.000027 - momentum: 0.000000
|
153 |
+
2023-10-25 16:58:02,779 epoch 6 - iter 520/2606 - loss 0.04837650 - time (sec): 29.48 - samples/sec: 2595.28 - lr: 0.000027 - momentum: 0.000000
|
154 |
+
2023-10-25 16:58:17,011 epoch 6 - iter 780/2606 - loss 0.04578472 - time (sec): 43.71 - samples/sec: 2609.95 - lr: 0.000026 - momentum: 0.000000
|
155 |
+
2023-10-25 16:58:31,560 epoch 6 - iter 1040/2606 - loss 0.04760570 - time (sec): 58.26 - samples/sec: 2572.96 - lr: 0.000026 - momentum: 0.000000
|
156 |
+
2023-10-25 16:58:45,137 epoch 6 - iter 1300/2606 - loss 0.04892803 - time (sec): 71.84 - samples/sec: 2569.00 - lr: 0.000025 - momentum: 0.000000
|
157 |
+
2023-10-25 16:58:58,688 epoch 6 - iter 1560/2606 - loss 0.05121577 - time (sec): 85.39 - samples/sec: 2567.67 - lr: 0.000024 - momentum: 0.000000
|
158 |
+
2023-10-25 16:59:13,684 epoch 6 - iter 1820/2606 - loss 0.05294998 - time (sec): 100.39 - samples/sec: 2576.77 - lr: 0.000024 - momentum: 0.000000
|
159 |
+
2023-10-25 16:59:27,754 epoch 6 - iter 2080/2606 - loss 0.05640148 - time (sec): 114.46 - samples/sec: 2573.59 - lr: 0.000023 - momentum: 0.000000
|
160 |
+
2023-10-25 16:59:41,576 epoch 6 - iter 2340/2606 - loss 0.05593627 - time (sec): 128.28 - samples/sec: 2576.66 - lr: 0.000023 - momentum: 0.000000
|
161 |
+
2023-10-25 16:59:55,997 epoch 6 - iter 2600/2606 - loss 0.05483941 - time (sec): 142.70 - samples/sec: 2565.84 - lr: 0.000022 - momentum: 0.000000
|
162 |
+
2023-10-25 16:59:56,369 ----------------------------------------------------------------------------------------------------
|
163 |
+
2023-10-25 16:59:56,369 EPOCH 6 done: loss 0.0547 - lr: 0.000022
|
164 |
+
2023-10-25 17:00:02,624 DEV : loss 0.33623284101486206 - f1-score (micro avg) 0.3687
|
165 |
+
2023-10-25 17:00:02,649 ----------------------------------------------------------------------------------------------------
|
166 |
+
2023-10-25 17:00:16,615 epoch 7 - iter 260/2606 - loss 0.03858880 - time (sec): 13.97 - samples/sec: 2649.66 - lr: 0.000022 - momentum: 0.000000
|
167 |
+
2023-10-25 17:00:30,568 epoch 7 - iter 520/2606 - loss 0.04139851 - time (sec): 27.92 - samples/sec: 2635.80 - lr: 0.000021 - momentum: 0.000000
|
168 |
+
2023-10-25 17:00:45,290 epoch 7 - iter 780/2606 - loss 0.04241529 - time (sec): 42.64 - samples/sec: 2604.64 - lr: 0.000021 - momentum: 0.000000
|
169 |
+
2023-10-25 17:00:59,285 epoch 7 - iter 1040/2606 - loss 0.04833894 - time (sec): 56.64 - samples/sec: 2601.68 - lr: 0.000020 - momentum: 0.000000
|
170 |
+
2023-10-25 17:01:13,271 epoch 7 - iter 1300/2606 - loss 0.04856922 - time (sec): 70.62 - samples/sec: 2592.87 - lr: 0.000019 - momentum: 0.000000
|
171 |
+
2023-10-25 17:01:28,375 epoch 7 - iter 1560/2606 - loss 0.05096085 - time (sec): 85.73 - samples/sec: 2579.70 - lr: 0.000019 - momentum: 0.000000
|
172 |
+
2023-10-25 17:01:43,143 epoch 7 - iter 1820/2606 - loss 0.05958653 - time (sec): 100.49 - samples/sec: 2603.24 - lr: 0.000018 - momentum: 0.000000
|
173 |
+
2023-10-25 17:01:56,751 epoch 7 - iter 2080/2606 - loss 0.06793201 - time (sec): 114.10 - samples/sec: 2605.36 - lr: 0.000018 - momentum: 0.000000
|
174 |
+
2023-10-25 17:02:09,950 epoch 7 - iter 2340/2606 - loss 0.06878116 - time (sec): 127.30 - samples/sec: 2607.52 - lr: 0.000017 - momentum: 0.000000
|
175 |
+
2023-10-25 17:02:23,915 epoch 7 - iter 2600/2606 - loss 0.06941224 - time (sec): 141.27 - samples/sec: 2596.78 - lr: 0.000017 - momentum: 0.000000
|
176 |
+
2023-10-25 17:02:24,220 ----------------------------------------------------------------------------------------------------
|
177 |
+
2023-10-25 17:02:24,220 EPOCH 7 done: loss 0.0694 - lr: 0.000017
|
178 |
+
2023-10-25 17:02:30,444 DEV : loss 0.35152772068977356 - f1-score (micro avg) 0.3214
|
179 |
+
2023-10-25 17:02:30,469 ----------------------------------------------------------------------------------------------------
|
180 |
+
2023-10-25 17:02:44,163 epoch 8 - iter 260/2606 - loss 0.07588476 - time (sec): 13.69 - samples/sec: 2635.53 - lr: 0.000016 - momentum: 0.000000
|
181 |
+
2023-10-25 17:02:57,982 epoch 8 - iter 520/2606 - loss 0.10043230 - time (sec): 27.51 - samples/sec: 2649.59 - lr: 0.000016 - momentum: 0.000000
|
182 |
+
2023-10-25 17:03:11,756 epoch 8 - iter 780/2606 - loss 0.13203650 - time (sec): 41.29 - samples/sec: 2628.01 - lr: 0.000015 - momentum: 0.000000
|
183 |
+
2023-10-25 17:03:25,598 epoch 8 - iter 1040/2606 - loss 0.12385530 - time (sec): 55.13 - samples/sec: 2623.26 - lr: 0.000014 - momentum: 0.000000
|
184 |
+
2023-10-25 17:03:39,705 epoch 8 - iter 1300/2606 - loss 0.12813762 - time (sec): 69.23 - samples/sec: 2618.67 - lr: 0.000014 - momentum: 0.000000
|
185 |
+
2023-10-25 17:03:53,694 epoch 8 - iter 1560/2606 - loss 0.13153397 - time (sec): 83.22 - samples/sec: 2621.37 - lr: 0.000013 - momentum: 0.000000
|
186 |
+
2023-10-25 17:04:08,336 epoch 8 - iter 1820/2606 - loss 0.12905434 - time (sec): 97.87 - samples/sec: 2630.44 - lr: 0.000013 - momentum: 0.000000
|
187 |
+
2023-10-25 17:04:22,400 epoch 8 - iter 2080/2606 - loss 0.13389258 - time (sec): 111.93 - samples/sec: 2623.41 - lr: 0.000012 - momentum: 0.000000
|
188 |
+
2023-10-25 17:04:36,755 epoch 8 - iter 2340/2606 - loss 0.13480518 - time (sec): 126.28 - samples/sec: 2606.93 - lr: 0.000012 - momentum: 0.000000
|
189 |
+
2023-10-25 17:04:50,583 epoch 8 - iter 2600/2606 - loss 0.13531880 - time (sec): 140.11 - samples/sec: 2616.35 - lr: 0.000011 - momentum: 0.000000
|
190 |
+
2023-10-25 17:04:50,912 ----------------------------------------------------------------------------------------------------
|
191 |
+
2023-10-25 17:04:50,912 EPOCH 8 done: loss 0.1352 - lr: 0.000011
|
192 |
+
2023-10-25 17:04:57,141 DEV : loss 0.2633623480796814 - f1-score (micro avg) 0.2342
|
193 |
+
2023-10-25 17:04:57,166 ----------------------------------------------------------------------------------------------------
|
194 |
+
2023-10-25 17:05:11,033 epoch 9 - iter 260/2606 - loss 0.08967090 - time (sec): 13.87 - samples/sec: 2713.58 - lr: 0.000011 - momentum: 0.000000
|
195 |
+
2023-10-25 17:05:25,132 epoch 9 - iter 520/2606 - loss 0.09331506 - time (sec): 27.97 - samples/sec: 2651.52 - lr: 0.000010 - momentum: 0.000000
|
196 |
+
2023-10-25 17:05:38,813 epoch 9 - iter 780/2606 - loss 0.09092922 - time (sec): 41.65 - samples/sec: 2643.14 - lr: 0.000009 - momentum: 0.000000
|
197 |
+
2023-10-25 17:05:52,488 epoch 9 - iter 1040/2606 - loss 0.09774521 - time (sec): 55.32 - samples/sec: 2686.25 - lr: 0.000009 - momentum: 0.000000
|
198 |
+
2023-10-25 17:06:06,110 epoch 9 - iter 1300/2606 - loss 0.10814172 - time (sec): 68.94 - samples/sec: 2685.63 - lr: 0.000008 - momentum: 0.000000
|
199 |
+
2023-10-25 17:06:19,697 epoch 9 - iter 1560/2606 - loss 0.11196481 - time (sec): 82.53 - samples/sec: 2668.35 - lr: 0.000008 - momentum: 0.000000
|
200 |
+
2023-10-25 17:06:33,655 epoch 9 - iter 1820/2606 - loss 0.11081450 - time (sec): 96.49 - samples/sec: 2673.87 - lr: 0.000007 - momentum: 0.000000
|
201 |
+
2023-10-25 17:06:47,477 epoch 9 - iter 2080/2606 - loss 0.11167705 - time (sec): 110.31 - samples/sec: 2663.33 - lr: 0.000007 - momentum: 0.000000
|
202 |
+
2023-10-25 17:07:01,705 epoch 9 - iter 2340/2606 - loss 0.11066523 - time (sec): 124.54 - samples/sec: 2664.34 - lr: 0.000006 - momentum: 0.000000
|
203 |
+
2023-10-25 17:07:15,529 epoch 9 - iter 2600/2606 - loss 0.11158714 - time (sec): 138.36 - samples/sec: 2647.26 - lr: 0.000006 - momentum: 0.000000
|
204 |
+
2023-10-25 17:07:15,945 ----------------------------------------------------------------------------------------------------
|
205 |
+
2023-10-25 17:07:15,946 EPOCH 9 done: loss 0.1115 - lr: 0.000006
|
206 |
+
2023-10-25 17:07:22,880 DEV : loss 0.2682478427886963 - f1-score (micro avg) 0.2293
|
207 |
+
2023-10-25 17:07:22,913 ----------------------------------------------------------------------------------------------------
|
208 |
+
2023-10-25 17:07:37,193 epoch 10 - iter 260/2606 - loss 0.09408029 - time (sec): 14.28 - samples/sec: 2595.12 - lr: 0.000005 - momentum: 0.000000
|
209 |
+
2023-10-25 17:07:51,010 epoch 10 - iter 520/2606 - loss 0.09512229 - time (sec): 28.09 - samples/sec: 2593.26 - lr: 0.000004 - momentum: 0.000000
|
210 |
+
2023-10-25 17:08:05,607 epoch 10 - iter 780/2606 - loss 0.08964442 - time (sec): 42.69 - samples/sec: 2609.86 - lr: 0.000004 - momentum: 0.000000
|
211 |
+
2023-10-25 17:08:20,011 epoch 10 - iter 1040/2606 - loss 0.08987618 - time (sec): 57.10 - samples/sec: 2633.35 - lr: 0.000003 - momentum: 0.000000
|
212 |
+
2023-10-25 17:08:33,885 epoch 10 - iter 1300/2606 - loss 0.08788357 - time (sec): 70.97 - samples/sec: 2663.52 - lr: 0.000003 - momentum: 0.000000
|
213 |
+
2023-10-25 17:08:47,392 epoch 10 - iter 1560/2606 - loss 0.08724918 - time (sec): 84.48 - samples/sec: 2641.55 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-10-25 17:09:01,218 epoch 10 - iter 1820/2606 - loss 0.08700501 - time (sec): 98.30 - samples/sec: 2620.75 - lr: 0.000002 - momentum: 0.000000
|
215 |
+
2023-10-25 17:09:14,991 epoch 10 - iter 2080/2606 - loss 0.08812984 - time (sec): 112.08 - samples/sec: 2606.24 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-10-25 17:09:29,100 epoch 10 - iter 2340/2606 - loss 0.09074088 - time (sec): 126.18 - samples/sec: 2614.01 - lr: 0.000001 - momentum: 0.000000
|
217 |
+
2023-10-25 17:09:43,532 epoch 10 - iter 2600/2606 - loss 0.09068240 - time (sec): 140.62 - samples/sec: 2606.43 - lr: 0.000000 - momentum: 0.000000
|
218 |
+
2023-10-25 17:09:43,851 ----------------------------------------------------------------------------------------------------
|
219 |
+
2023-10-25 17:09:43,851 EPOCH 10 done: loss 0.0905 - lr: 0.000000
|
220 |
+
2023-10-25 17:09:50,726 DEV : loss 0.27786970138549805 - f1-score (micro avg) 0.2168
|
221 |
+
2023-10-25 17:09:51,221 ----------------------------------------------------------------------------------------------------
|
222 |
+
2023-10-25 17:09:51,222 Loading model from best epoch ...
|
223 |
+
2023-10-25 17:09:52,830 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
|
224 |
+
2023-10-25 17:10:02,533
|
225 |
+
Results:
|
226 |
+
- F-score (micro) 0.4446
|
227 |
+
- F-score (macro) 0.2829
|
228 |
+
- Accuracy 0.2912
|
229 |
+
|
230 |
+
By class:
|
231 |
+
precision recall f1-score support
|
232 |
+
|
233 |
+
LOC 0.5264 0.5840 0.5537 1214
|
234 |
+
PER 0.4000 0.3490 0.3728 808
|
235 |
+
ORG 0.2194 0.1926 0.2051 353
|
236 |
+
HumanProd 0.0000 0.0000 0.0000 15
|
237 |
+
|
238 |
+
micro avg 0.4461 0.4431 0.4446 2390
|
239 |
+
macro avg 0.2864 0.2814 0.2829 2390
|
240 |
+
weighted avg 0.4350 0.4431 0.4376 2390
|
241 |
+
|
242 |
+
2023-10-25 17:10:02,533 ----------------------------------------------------------------------------------------------------
|