stefan-it's picture
Upload folder using huggingface_hub
9b6507c
2023-10-17 11:13:06,040 ----------------------------------------------------------------------------------------------------
2023-10-17 11:13:06,042 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): ElectraModel(
(embeddings): ElectraEmbeddings(
(word_embeddings): Embedding(32001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): ElectraEncoder(
(layer): ModuleList(
(0-11): 12 x ElectraLayer(
(attention): ElectraAttention(
(self): ElectraSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): ElectraSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): ElectraIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): ElectraOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=13, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-17 11:13:06,042 ----------------------------------------------------------------------------------------------------
2023-10-17 11:13:06,042 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
- NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
2023-10-17 11:13:06,042 ----------------------------------------------------------------------------------------------------
2023-10-17 11:13:06,042 Train: 14465 sentences
2023-10-17 11:13:06,042 (train_with_dev=False, train_with_test=False)
2023-10-17 11:13:06,042 ----------------------------------------------------------------------------------------------------
2023-10-17 11:13:06,042 Training Params:
2023-10-17 11:13:06,042 - learning_rate: "3e-05"
2023-10-17 11:13:06,042 - mini_batch_size: "4"
2023-10-17 11:13:06,042 - max_epochs: "10"
2023-10-17 11:13:06,042 - shuffle: "True"
2023-10-17 11:13:06,042 ----------------------------------------------------------------------------------------------------
2023-10-17 11:13:06,042 Plugins:
2023-10-17 11:13:06,042 - TensorboardLogger
2023-10-17 11:13:06,042 - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 11:13:06,042 ----------------------------------------------------------------------------------------------------
2023-10-17 11:13:06,042 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 11:13:06,042 - metric: "('micro avg', 'f1-score')"
2023-10-17 11:13:06,043 ----------------------------------------------------------------------------------------------------
2023-10-17 11:13:06,043 Computation:
2023-10-17 11:13:06,043 - compute on device: cuda:0
2023-10-17 11:13:06,043 - embedding storage: none
2023-10-17 11:13:06,043 ----------------------------------------------------------------------------------------------------
2023-10-17 11:13:06,043 Model training base path: "hmbench-letemps/fr-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-17 11:13:06,043 ----------------------------------------------------------------------------------------------------
2023-10-17 11:13:06,043 ----------------------------------------------------------------------------------------------------
2023-10-17 11:13:06,043 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 11:13:29,167 epoch 1 - iter 361/3617 - loss 1.78814431 - time (sec): 23.12 - samples/sec: 1638.45 - lr: 0.000003 - momentum: 0.000000
2023-10-17 11:13:51,939 epoch 1 - iter 722/3617 - loss 1.02838317 - time (sec): 45.89 - samples/sec: 1619.95 - lr: 0.000006 - momentum: 0.000000
2023-10-17 11:14:14,528 epoch 1 - iter 1083/3617 - loss 0.72995508 - time (sec): 68.48 - samples/sec: 1666.05 - lr: 0.000009 - momentum: 0.000000
2023-10-17 11:14:36,884 epoch 1 - iter 1444/3617 - loss 0.58463242 - time (sec): 90.84 - samples/sec: 1681.06 - lr: 0.000012 - momentum: 0.000000
2023-10-17 11:14:59,161 epoch 1 - iter 1805/3617 - loss 0.49786262 - time (sec): 113.12 - samples/sec: 1688.72 - lr: 0.000015 - momentum: 0.000000
2023-10-17 11:15:21,931 epoch 1 - iter 2166/3617 - loss 0.43668822 - time (sec): 135.89 - samples/sec: 1681.37 - lr: 0.000018 - momentum: 0.000000
2023-10-17 11:15:44,174 epoch 1 - iter 2527/3617 - loss 0.38974770 - time (sec): 158.13 - samples/sec: 1685.61 - lr: 0.000021 - momentum: 0.000000
2023-10-17 11:16:06,276 epoch 1 - iter 2888/3617 - loss 0.35471982 - time (sec): 180.23 - samples/sec: 1697.15 - lr: 0.000024 - momentum: 0.000000
2023-10-17 11:16:29,303 epoch 1 - iter 3249/3617 - loss 0.32794931 - time (sec): 203.26 - samples/sec: 1690.14 - lr: 0.000027 - momentum: 0.000000
2023-10-17 11:16:51,321 epoch 1 - iter 3610/3617 - loss 0.30809550 - time (sec): 225.28 - samples/sec: 1683.37 - lr: 0.000030 - momentum: 0.000000
2023-10-17 11:16:51,740 ----------------------------------------------------------------------------------------------------
2023-10-17 11:16:51,740 EPOCH 1 done: loss 0.3077 - lr: 0.000030
2023-10-17 11:16:57,177 DEV : loss 0.10886511206626892 - f1-score (micro avg) 0.5581
2023-10-17 11:16:57,218 saving best model
2023-10-17 11:16:57,714 ----------------------------------------------------------------------------------------------------
2023-10-17 11:17:21,078 epoch 2 - iter 361/3617 - loss 0.09908194 - time (sec): 23.36 - samples/sec: 1665.79 - lr: 0.000030 - momentum: 0.000000
2023-10-17 11:17:43,704 epoch 2 - iter 722/3617 - loss 0.09370839 - time (sec): 45.99 - samples/sec: 1678.56 - lr: 0.000029 - momentum: 0.000000
2023-10-17 11:18:04,258 epoch 2 - iter 1083/3617 - loss 0.09669946 - time (sec): 66.54 - samples/sec: 1715.28 - lr: 0.000029 - momentum: 0.000000
2023-10-17 11:18:27,278 epoch 2 - iter 1444/3617 - loss 0.09690415 - time (sec): 89.56 - samples/sec: 1693.33 - lr: 0.000029 - momentum: 0.000000
2023-10-17 11:18:50,785 epoch 2 - iter 1805/3617 - loss 0.09640509 - time (sec): 113.07 - samples/sec: 1667.49 - lr: 0.000028 - momentum: 0.000000
2023-10-17 11:19:13,316 epoch 2 - iter 2166/3617 - loss 0.09736145 - time (sec): 135.60 - samples/sec: 1673.97 - lr: 0.000028 - momentum: 0.000000
2023-10-17 11:19:36,497 epoch 2 - iter 2527/3617 - loss 0.09724732 - time (sec): 158.78 - samples/sec: 1674.03 - lr: 0.000028 - momentum: 0.000000
2023-10-17 11:19:59,357 epoch 2 - iter 2888/3617 - loss 0.09753849 - time (sec): 181.64 - samples/sec: 1671.08 - lr: 0.000027 - momentum: 0.000000
2023-10-17 11:20:21,693 epoch 2 - iter 3249/3617 - loss 0.09835920 - time (sec): 203.98 - samples/sec: 1678.98 - lr: 0.000027 - momentum: 0.000000
2023-10-17 11:20:44,900 epoch 2 - iter 3610/3617 - loss 0.09956665 - time (sec): 227.18 - samples/sec: 1669.58 - lr: 0.000027 - momentum: 0.000000
2023-10-17 11:20:45,322 ----------------------------------------------------------------------------------------------------
2023-10-17 11:20:45,323 EPOCH 2 done: loss 0.0996 - lr: 0.000027
2023-10-17 11:20:53,342 DEV : loss 0.16037893295288086 - f1-score (micro avg) 0.6557
2023-10-17 11:20:53,398 saving best model
2023-10-17 11:20:54,092 ----------------------------------------------------------------------------------------------------
2023-10-17 11:21:17,522 epoch 3 - iter 361/3617 - loss 0.07564517 - time (sec): 23.43 - samples/sec: 1569.42 - lr: 0.000026 - momentum: 0.000000
2023-10-17 11:21:40,082 epoch 3 - iter 722/3617 - loss 0.07332119 - time (sec): 45.99 - samples/sec: 1636.38 - lr: 0.000026 - momentum: 0.000000
2023-10-17 11:22:02,267 epoch 3 - iter 1083/3617 - loss 0.07222144 - time (sec): 68.17 - samples/sec: 1661.66 - lr: 0.000026 - momentum: 0.000000
2023-10-17 11:22:25,386 epoch 3 - iter 1444/3617 - loss 0.07619382 - time (sec): 91.29 - samples/sec: 1655.98 - lr: 0.000025 - momentum: 0.000000
2023-10-17 11:22:48,049 epoch 3 - iter 1805/3617 - loss 0.07401567 - time (sec): 113.95 - samples/sec: 1657.30 - lr: 0.000025 - momentum: 0.000000
2023-10-17 11:23:11,429 epoch 3 - iter 2166/3617 - loss 0.07403687 - time (sec): 137.33 - samples/sec: 1661.13 - lr: 0.000025 - momentum: 0.000000
2023-10-17 11:23:34,867 epoch 3 - iter 2527/3617 - loss 0.07637370 - time (sec): 160.77 - samples/sec: 1646.45 - lr: 0.000024 - momentum: 0.000000
2023-10-17 11:23:56,997 epoch 3 - iter 2888/3617 - loss 0.07722497 - time (sec): 182.90 - samples/sec: 1656.67 - lr: 0.000024 - momentum: 0.000000
2023-10-17 11:24:18,777 epoch 3 - iter 3249/3617 - loss 0.07737109 - time (sec): 204.68 - samples/sec: 1671.08 - lr: 0.000024 - momentum: 0.000000
2023-10-17 11:24:40,574 epoch 3 - iter 3610/3617 - loss 0.07738280 - time (sec): 226.48 - samples/sec: 1674.38 - lr: 0.000023 - momentum: 0.000000
2023-10-17 11:24:41,006 ----------------------------------------------------------------------------------------------------
2023-10-17 11:24:41,007 EPOCH 3 done: loss 0.0773 - lr: 0.000023
2023-10-17 11:24:47,385 DEV : loss 0.19637347757816315 - f1-score (micro avg) 0.641
2023-10-17 11:24:47,429 ----------------------------------------------------------------------------------------------------
2023-10-17 11:25:07,646 epoch 4 - iter 361/3617 - loss 0.05411431 - time (sec): 20.22 - samples/sec: 1910.72 - lr: 0.000023 - momentum: 0.000000
2023-10-17 11:25:31,466 epoch 4 - iter 722/3617 - loss 0.05682246 - time (sec): 44.03 - samples/sec: 1731.33 - lr: 0.000023 - momentum: 0.000000
2023-10-17 11:25:53,516 epoch 4 - iter 1083/3617 - loss 0.05717665 - time (sec): 66.09 - samples/sec: 1747.56 - lr: 0.000022 - momentum: 0.000000
2023-10-17 11:26:15,688 epoch 4 - iter 1444/3617 - loss 0.05618963 - time (sec): 88.26 - samples/sec: 1736.28 - lr: 0.000022 - momentum: 0.000000
2023-10-17 11:26:38,155 epoch 4 - iter 1805/3617 - loss 0.05712367 - time (sec): 110.72 - samples/sec: 1724.46 - lr: 0.000022 - momentum: 0.000000
2023-10-17 11:27:00,949 epoch 4 - iter 2166/3617 - loss 0.05692867 - time (sec): 133.52 - samples/sec: 1712.86 - lr: 0.000021 - momentum: 0.000000
2023-10-17 11:27:23,467 epoch 4 - iter 2527/3617 - loss 0.05681678 - time (sec): 156.04 - samples/sec: 1709.15 - lr: 0.000021 - momentum: 0.000000
2023-10-17 11:27:46,046 epoch 4 - iter 2888/3617 - loss 0.05638457 - time (sec): 178.62 - samples/sec: 1709.53 - lr: 0.000021 - momentum: 0.000000
2023-10-17 11:28:08,185 epoch 4 - iter 3249/3617 - loss 0.05669655 - time (sec): 200.75 - samples/sec: 1707.91 - lr: 0.000020 - momentum: 0.000000
2023-10-17 11:28:29,984 epoch 4 - iter 3610/3617 - loss 0.05711627 - time (sec): 222.55 - samples/sec: 1704.86 - lr: 0.000020 - momentum: 0.000000
2023-10-17 11:28:30,384 ----------------------------------------------------------------------------------------------------
2023-10-17 11:28:30,384 EPOCH 4 done: loss 0.0571 - lr: 0.000020
2023-10-17 11:28:37,543 DEV : loss 0.22119659185409546 - f1-score (micro avg) 0.6434
2023-10-17 11:28:37,584 ----------------------------------------------------------------------------------------------------
2023-10-17 11:28:58,907 epoch 5 - iter 361/3617 - loss 0.02823394 - time (sec): 21.32 - samples/sec: 1779.84 - lr: 0.000020 - momentum: 0.000000
2023-10-17 11:29:20,770 epoch 5 - iter 722/3617 - loss 0.03377243 - time (sec): 43.18 - samples/sec: 1773.25 - lr: 0.000019 - momentum: 0.000000
2023-10-17 11:29:43,045 epoch 5 - iter 1083/3617 - loss 0.03634121 - time (sec): 65.46 - samples/sec: 1746.02 - lr: 0.000019 - momentum: 0.000000
2023-10-17 11:30:05,310 epoch 5 - iter 1444/3617 - loss 0.03734307 - time (sec): 87.72 - samples/sec: 1736.47 - lr: 0.000019 - momentum: 0.000000
2023-10-17 11:30:28,900 epoch 5 - iter 1805/3617 - loss 0.03666498 - time (sec): 111.31 - samples/sec: 1721.54 - lr: 0.000018 - momentum: 0.000000
2023-10-17 11:30:51,224 epoch 5 - iter 2166/3617 - loss 0.03718897 - time (sec): 133.64 - samples/sec: 1727.19 - lr: 0.000018 - momentum: 0.000000
2023-10-17 11:31:13,996 epoch 5 - iter 2527/3617 - loss 0.03914152 - time (sec): 156.41 - samples/sec: 1708.55 - lr: 0.000018 - momentum: 0.000000
2023-10-17 11:31:36,302 epoch 5 - iter 2888/3617 - loss 0.03939405 - time (sec): 178.72 - samples/sec: 1693.34 - lr: 0.000017 - momentum: 0.000000
2023-10-17 11:31:58,970 epoch 5 - iter 3249/3617 - loss 0.03829028 - time (sec): 201.38 - samples/sec: 1694.76 - lr: 0.000017 - momentum: 0.000000
2023-10-17 11:32:22,708 epoch 5 - iter 3610/3617 - loss 0.03943816 - time (sec): 225.12 - samples/sec: 1683.96 - lr: 0.000017 - momentum: 0.000000
2023-10-17 11:32:23,170 ----------------------------------------------------------------------------------------------------
2023-10-17 11:32:23,170 EPOCH 5 done: loss 0.0394 - lr: 0.000017
2023-10-17 11:32:29,478 DEV : loss 0.29799073934555054 - f1-score (micro avg) 0.6527
2023-10-17 11:32:29,521 ----------------------------------------------------------------------------------------------------
2023-10-17 11:32:52,384 epoch 6 - iter 361/3617 - loss 0.02573007 - time (sec): 22.86 - samples/sec: 1637.30 - lr: 0.000016 - momentum: 0.000000
2023-10-17 11:33:15,775 epoch 6 - iter 722/3617 - loss 0.02511481 - time (sec): 46.25 - samples/sec: 1615.72 - lr: 0.000016 - momentum: 0.000000
2023-10-17 11:33:38,654 epoch 6 - iter 1083/3617 - loss 0.02682181 - time (sec): 69.13 - samples/sec: 1631.61 - lr: 0.000016 - momentum: 0.000000
2023-10-17 11:34:02,271 epoch 6 - iter 1444/3617 - loss 0.02846690 - time (sec): 92.75 - samples/sec: 1630.95 - lr: 0.000015 - momentum: 0.000000
2023-10-17 11:34:25,914 epoch 6 - iter 1805/3617 - loss 0.02838906 - time (sec): 116.39 - samples/sec: 1631.91 - lr: 0.000015 - momentum: 0.000000
2023-10-17 11:34:49,761 epoch 6 - iter 2166/3617 - loss 0.02877434 - time (sec): 140.24 - samples/sec: 1626.20 - lr: 0.000015 - momentum: 0.000000
2023-10-17 11:35:13,140 epoch 6 - iter 2527/3617 - loss 0.02838507 - time (sec): 163.62 - samples/sec: 1627.41 - lr: 0.000014 - momentum: 0.000000
2023-10-17 11:35:35,438 epoch 6 - iter 2888/3617 - loss 0.02895275 - time (sec): 185.92 - samples/sec: 1635.29 - lr: 0.000014 - momentum: 0.000000
2023-10-17 11:35:58,001 epoch 6 - iter 3249/3617 - loss 0.02881247 - time (sec): 208.48 - samples/sec: 1636.41 - lr: 0.000014 - momentum: 0.000000
2023-10-17 11:36:21,047 epoch 6 - iter 3610/3617 - loss 0.02904294 - time (sec): 231.52 - samples/sec: 1638.64 - lr: 0.000013 - momentum: 0.000000
2023-10-17 11:36:21,475 ----------------------------------------------------------------------------------------------------
2023-10-17 11:36:21,475 EPOCH 6 done: loss 0.0291 - lr: 0.000013
2023-10-17 11:36:27,876 DEV : loss 0.3385041356086731 - f1-score (micro avg) 0.6408
2023-10-17 11:36:27,920 ----------------------------------------------------------------------------------------------------
2023-10-17 11:36:50,238 epoch 7 - iter 361/3617 - loss 0.01432701 - time (sec): 22.32 - samples/sec: 1700.15 - lr: 0.000013 - momentum: 0.000000
2023-10-17 11:37:10,807 epoch 7 - iter 722/3617 - loss 0.01555267 - time (sec): 42.88 - samples/sec: 1756.46 - lr: 0.000013 - momentum: 0.000000
2023-10-17 11:37:34,793 epoch 7 - iter 1083/3617 - loss 0.01777501 - time (sec): 66.87 - samples/sec: 1692.09 - lr: 0.000012 - momentum: 0.000000
2023-10-17 11:37:56,843 epoch 7 - iter 1444/3617 - loss 0.02027093 - time (sec): 88.92 - samples/sec: 1699.03 - lr: 0.000012 - momentum: 0.000000
2023-10-17 11:38:19,092 epoch 7 - iter 1805/3617 - loss 0.01980969 - time (sec): 111.17 - samples/sec: 1702.08 - lr: 0.000012 - momentum: 0.000000
2023-10-17 11:38:41,205 epoch 7 - iter 2166/3617 - loss 0.02022525 - time (sec): 133.28 - samples/sec: 1702.67 - lr: 0.000011 - momentum: 0.000000
2023-10-17 11:39:04,065 epoch 7 - iter 2527/3617 - loss 0.02165812 - time (sec): 156.14 - samples/sec: 1700.48 - lr: 0.000011 - momentum: 0.000000
2023-10-17 11:39:27,133 epoch 7 - iter 2888/3617 - loss 0.02180513 - time (sec): 179.21 - samples/sec: 1692.36 - lr: 0.000011 - momentum: 0.000000
2023-10-17 11:39:49,393 epoch 7 - iter 3249/3617 - loss 0.02148273 - time (sec): 201.47 - samples/sec: 1697.80 - lr: 0.000010 - momentum: 0.000000
2023-10-17 11:40:11,734 epoch 7 - iter 3610/3617 - loss 0.02149257 - time (sec): 223.81 - samples/sec: 1694.80 - lr: 0.000010 - momentum: 0.000000
2023-10-17 11:40:12,185 ----------------------------------------------------------------------------------------------------
2023-10-17 11:40:12,186 EPOCH 7 done: loss 0.0216 - lr: 0.000010
2023-10-17 11:40:18,549 DEV : loss 0.3538167476654053 - f1-score (micro avg) 0.6501
2023-10-17 11:40:18,591 ----------------------------------------------------------------------------------------------------
2023-10-17 11:40:40,700 epoch 8 - iter 361/3617 - loss 0.01192797 - time (sec): 22.11 - samples/sec: 1705.35 - lr: 0.000010 - momentum: 0.000000
2023-10-17 11:41:03,756 epoch 8 - iter 722/3617 - loss 0.01213621 - time (sec): 45.16 - samples/sec: 1658.34 - lr: 0.000009 - momentum: 0.000000
2023-10-17 11:41:27,927 epoch 8 - iter 1083/3617 - loss 0.01286573 - time (sec): 69.33 - samples/sec: 1624.59 - lr: 0.000009 - momentum: 0.000000
2023-10-17 11:41:51,754 epoch 8 - iter 1444/3617 - loss 0.01313113 - time (sec): 93.16 - samples/sec: 1629.06 - lr: 0.000009 - momentum: 0.000000
2023-10-17 11:42:16,517 epoch 8 - iter 1805/3617 - loss 0.01306628 - time (sec): 117.92 - samples/sec: 1601.35 - lr: 0.000008 - momentum: 0.000000
2023-10-17 11:42:41,872 epoch 8 - iter 2166/3617 - loss 0.01391368 - time (sec): 143.28 - samples/sec: 1578.71 - lr: 0.000008 - momentum: 0.000000
2023-10-17 11:43:06,573 epoch 8 - iter 2527/3617 - loss 0.01391572 - time (sec): 167.98 - samples/sec: 1569.84 - lr: 0.000008 - momentum: 0.000000
2023-10-17 11:43:30,349 epoch 8 - iter 2888/3617 - loss 0.01336401 - time (sec): 191.76 - samples/sec: 1576.08 - lr: 0.000007 - momentum: 0.000000
2023-10-17 11:43:51,479 epoch 8 - iter 3249/3617 - loss 0.01320290 - time (sec): 212.89 - samples/sec: 1603.34 - lr: 0.000007 - momentum: 0.000000
2023-10-17 11:44:14,085 epoch 8 - iter 3610/3617 - loss 0.01301754 - time (sec): 235.49 - samples/sec: 1610.19 - lr: 0.000007 - momentum: 0.000000
2023-10-17 11:44:14,508 ----------------------------------------------------------------------------------------------------
2023-10-17 11:44:14,508 EPOCH 8 done: loss 0.0130 - lr: 0.000007
2023-10-17 11:44:20,974 DEV : loss 0.3859119117259979 - f1-score (micro avg) 0.6527
2023-10-17 11:44:21,026 ----------------------------------------------------------------------------------------------------
2023-10-17 11:44:46,418 epoch 9 - iter 361/3617 - loss 0.00859029 - time (sec): 25.39 - samples/sec: 1498.46 - lr: 0.000006 - momentum: 0.000000
2023-10-17 11:45:09,053 epoch 9 - iter 722/3617 - loss 0.00920184 - time (sec): 48.02 - samples/sec: 1550.20 - lr: 0.000006 - momentum: 0.000000
2023-10-17 11:45:31,985 epoch 9 - iter 1083/3617 - loss 0.00936040 - time (sec): 70.96 - samples/sec: 1569.14 - lr: 0.000006 - momentum: 0.000000
2023-10-17 11:45:55,056 epoch 9 - iter 1444/3617 - loss 0.00967607 - time (sec): 94.03 - samples/sec: 1585.73 - lr: 0.000005 - momentum: 0.000000
2023-10-17 11:46:18,172 epoch 9 - iter 1805/3617 - loss 0.00907964 - time (sec): 117.14 - samples/sec: 1605.14 - lr: 0.000005 - momentum: 0.000000
2023-10-17 11:46:41,668 epoch 9 - iter 2166/3617 - loss 0.00893534 - time (sec): 140.64 - samples/sec: 1607.77 - lr: 0.000005 - momentum: 0.000000
2023-10-17 11:47:04,925 epoch 9 - iter 2527/3617 - loss 0.00849365 - time (sec): 163.90 - samples/sec: 1612.69 - lr: 0.000004 - momentum: 0.000000
2023-10-17 11:47:28,072 epoch 9 - iter 2888/3617 - loss 0.00835917 - time (sec): 187.04 - samples/sec: 1618.16 - lr: 0.000004 - momentum: 0.000000
2023-10-17 11:47:51,051 epoch 9 - iter 3249/3617 - loss 0.00834899 - time (sec): 210.02 - samples/sec: 1619.02 - lr: 0.000004 - momentum: 0.000000
2023-10-17 11:48:12,830 epoch 9 - iter 3610/3617 - loss 0.00831963 - time (sec): 231.80 - samples/sec: 1635.73 - lr: 0.000003 - momentum: 0.000000
2023-10-17 11:48:13,250 ----------------------------------------------------------------------------------------------------
2023-10-17 11:48:13,251 EPOCH 9 done: loss 0.0083 - lr: 0.000003
2023-10-17 11:48:19,769 DEV : loss 0.4002314805984497 - f1-score (micro avg) 0.6641
2023-10-17 11:48:19,813 saving best model
2023-10-17 11:48:20,421 ----------------------------------------------------------------------------------------------------
2023-10-17 11:48:42,618 epoch 10 - iter 361/3617 - loss 0.00672252 - time (sec): 22.20 - samples/sec: 1651.90 - lr: 0.000003 - momentum: 0.000000
2023-10-17 11:49:05,425 epoch 10 - iter 722/3617 - loss 0.00611528 - time (sec): 45.00 - samples/sec: 1679.01 - lr: 0.000003 - momentum: 0.000000
2023-10-17 11:49:28,674 epoch 10 - iter 1083/3617 - loss 0.00518175 - time (sec): 68.25 - samples/sec: 1637.70 - lr: 0.000002 - momentum: 0.000000
2023-10-17 11:49:51,468 epoch 10 - iter 1444/3617 - loss 0.00501517 - time (sec): 91.04 - samples/sec: 1652.46 - lr: 0.000002 - momentum: 0.000000
2023-10-17 11:50:13,801 epoch 10 - iter 1805/3617 - loss 0.00526015 - time (sec): 113.38 - samples/sec: 1658.65 - lr: 0.000002 - momentum: 0.000000
2023-10-17 11:50:33,920 epoch 10 - iter 2166/3617 - loss 0.00556562 - time (sec): 133.50 - samples/sec: 1695.49 - lr: 0.000001 - momentum: 0.000000
2023-10-17 11:50:57,467 epoch 10 - iter 2527/3617 - loss 0.00515816 - time (sec): 157.04 - samples/sec: 1674.52 - lr: 0.000001 - momentum: 0.000000
2023-10-17 11:51:21,410 epoch 10 - iter 2888/3617 - loss 0.00538365 - time (sec): 180.99 - samples/sec: 1670.23 - lr: 0.000001 - momentum: 0.000000
2023-10-17 11:51:44,574 epoch 10 - iter 3249/3617 - loss 0.00546926 - time (sec): 204.15 - samples/sec: 1673.63 - lr: 0.000000 - momentum: 0.000000
2023-10-17 11:52:07,470 epoch 10 - iter 3610/3617 - loss 0.00532840 - time (sec): 227.05 - samples/sec: 1670.42 - lr: 0.000000 - momentum: 0.000000
2023-10-17 11:52:07,907 ----------------------------------------------------------------------------------------------------
2023-10-17 11:52:07,908 EPOCH 10 done: loss 0.0053 - lr: 0.000000
2023-10-17 11:52:15,079 DEV : loss 0.4149819612503052 - f1-score (micro avg) 0.6604
2023-10-17 11:52:15,631 ----------------------------------------------------------------------------------------------------
2023-10-17 11:52:15,632 Loading model from best epoch ...
2023-10-17 11:52:17,415 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
2023-10-17 11:52:25,444
Results:
- F-score (micro) 0.6525
- F-score (macro) 0.5043
- Accuracy 0.498
By class:
precision recall f1-score support
loc 0.6511 0.7800 0.7098 591
pers 0.5768 0.7367 0.6470 357
org 0.1774 0.1392 0.1560 79
micro avg 0.5995 0.7157 0.6525 1027
macro avg 0.4684 0.5520 0.5043 1027
weighted avg 0.5888 0.7157 0.6454 1027
2023-10-17 11:52:25,444 ----------------------------------------------------------------------------------------------------