Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697558152.bce904bcef33.2251.3 +3 -0
- test.tsv +0 -0
- training.log +239 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9bdfbe877bce233745ca50051b56b864313afeccf6d942110517b9b3cf3cc1b
|
3 |
+
size 440941957
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 15:56:47 0.0000 0.3940 0.0830 0.8520 0.6839 0.7587 0.6170
|
3 |
+
2 15:57:45 0.0000 0.0831 0.0802 0.8783 0.7231 0.7932 0.6641
|
4 |
+
3 15:58:41 0.0000 0.0579 0.0765 0.8998 0.8254 0.8610 0.7668
|
5 |
+
4 15:59:39 0.0000 0.0424 0.0751 0.8754 0.8275 0.8508 0.7564
|
6 |
+
5 16:00:36 0.0000 0.0322 0.1050 0.8893 0.7965 0.8403 0.7343
|
7 |
+
6 16:01:33 0.0000 0.0222 0.1026 0.8688 0.8616 0.8651 0.7729
|
8 |
+
7 16:02:30 0.0000 0.0159 0.1268 0.8980 0.8182 0.8562 0.7593
|
9 |
+
8 16:03:26 0.0000 0.0101 0.1283 0.9057 0.8337 0.8682 0.7782
|
10 |
+
9 16:04:23 0.0000 0.0072 0.1468 0.9036 0.8326 0.8667 0.7772
|
11 |
+
10 16:05:19 0.0000 0.0052 0.1494 0.9021 0.8378 0.8688 0.7791
|
runs/events.out.tfevents.1697558152.bce904bcef33.2251.3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b223a07a9ff7aad0cc99bdf967acf4818999bd88a8e0cb13ced8382e72d1b3b
|
3 |
+
size 407048
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-17 15:55:52,625 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-17 15:55:52,626 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): ElectraModel(
|
5 |
+
(embeddings): ElectraEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): ElectraEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x ElectraLayer(
|
15 |
+
(attention): ElectraAttention(
|
16 |
+
(self): ElectraSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): ElectraSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): ElectraIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): ElectraOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
)
|
41 |
+
)
|
42 |
+
(locked_dropout): LockedDropout(p=0.5)
|
43 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
44 |
+
(loss_function): CrossEntropyLoss()
|
45 |
+
)"
|
46 |
+
2023-10-17 15:55:52,626 ----------------------------------------------------------------------------------------------------
|
47 |
+
2023-10-17 15:55:52,626 MultiCorpus: 5777 train + 722 dev + 723 test sentences
|
48 |
+
- NER_ICDAR_EUROPEANA Corpus: 5777 train + 722 dev + 723 test sentences - /root/.flair/datasets/ner_icdar_europeana/nl
|
49 |
+
2023-10-17 15:55:52,627 ----------------------------------------------------------------------------------------------------
|
50 |
+
2023-10-17 15:55:52,627 Train: 5777 sentences
|
51 |
+
2023-10-17 15:55:52,627 (train_with_dev=False, train_with_test=False)
|
52 |
+
2023-10-17 15:55:52,627 ----------------------------------------------------------------------------------------------------
|
53 |
+
2023-10-17 15:55:52,627 Training Params:
|
54 |
+
2023-10-17 15:55:52,627 - learning_rate: "5e-05"
|
55 |
+
2023-10-17 15:55:52,627 - mini_batch_size: "8"
|
56 |
+
2023-10-17 15:55:52,627 - max_epochs: "10"
|
57 |
+
2023-10-17 15:55:52,627 - shuffle: "True"
|
58 |
+
2023-10-17 15:55:52,627 ----------------------------------------------------------------------------------------------------
|
59 |
+
2023-10-17 15:55:52,627 Plugins:
|
60 |
+
2023-10-17 15:55:52,627 - TensorboardLogger
|
61 |
+
2023-10-17 15:55:52,627 - LinearScheduler | warmup_fraction: '0.1'
|
62 |
+
2023-10-17 15:55:52,627 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-17 15:55:52,627 Final evaluation on model from best epoch (best-model.pt)
|
64 |
+
2023-10-17 15:55:52,627 - metric: "('micro avg', 'f1-score')"
|
65 |
+
2023-10-17 15:55:52,627 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-17 15:55:52,627 Computation:
|
67 |
+
2023-10-17 15:55:52,627 - compute on device: cuda:0
|
68 |
+
2023-10-17 15:55:52,627 - embedding storage: none
|
69 |
+
2023-10-17 15:55:52,627 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-17 15:55:52,627 Model training base path: "hmbench-icdar/nl-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
|
71 |
+
2023-10-17 15:55:52,628 ----------------------------------------------------------------------------------------------------
|
72 |
+
2023-10-17 15:55:52,628 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-17 15:55:52,628 Logging anything other than scalars to TensorBoard is currently not supported.
|
74 |
+
2023-10-17 15:55:58,075 epoch 1 - iter 72/723 - loss 2.37947798 - time (sec): 5.45 - samples/sec: 3407.16 - lr: 0.000005 - momentum: 0.000000
|
75 |
+
2023-10-17 15:56:03,002 epoch 1 - iter 144/723 - loss 1.44089682 - time (sec): 10.37 - samples/sec: 3320.20 - lr: 0.000010 - momentum: 0.000000
|
76 |
+
2023-10-17 15:56:08,099 epoch 1 - iter 216/723 - loss 1.01364540 - time (sec): 15.47 - samples/sec: 3367.82 - lr: 0.000015 - momentum: 0.000000
|
77 |
+
2023-10-17 15:56:13,081 epoch 1 - iter 288/723 - loss 0.80827500 - time (sec): 20.45 - samples/sec: 3338.59 - lr: 0.000020 - momentum: 0.000000
|
78 |
+
2023-10-17 15:56:18,269 epoch 1 - iter 360/723 - loss 0.67177544 - time (sec): 25.64 - samples/sec: 3373.62 - lr: 0.000025 - momentum: 0.000000
|
79 |
+
2023-10-17 15:56:23,923 epoch 1 - iter 432/723 - loss 0.57566837 - time (sec): 31.29 - samples/sec: 3371.60 - lr: 0.000030 - momentum: 0.000000
|
80 |
+
2023-10-17 15:56:29,072 epoch 1 - iter 504/723 - loss 0.51023937 - time (sec): 36.44 - samples/sec: 3378.90 - lr: 0.000035 - momentum: 0.000000
|
81 |
+
2023-10-17 15:56:34,679 epoch 1 - iter 576/723 - loss 0.46099667 - time (sec): 42.05 - samples/sec: 3356.09 - lr: 0.000040 - momentum: 0.000000
|
82 |
+
2023-10-17 15:56:39,840 epoch 1 - iter 648/723 - loss 0.42468783 - time (sec): 47.21 - samples/sec: 3357.68 - lr: 0.000045 - momentum: 0.000000
|
83 |
+
2023-10-17 15:56:44,665 epoch 1 - iter 720/723 - loss 0.39489656 - time (sec): 52.04 - samples/sec: 3375.89 - lr: 0.000050 - momentum: 0.000000
|
84 |
+
2023-10-17 15:56:44,835 ----------------------------------------------------------------------------------------------------
|
85 |
+
2023-10-17 15:56:44,836 EPOCH 1 done: loss 0.3940 - lr: 0.000050
|
86 |
+
2023-10-17 15:56:47,691 DEV : loss 0.08297927677631378 - f1-score (micro avg) 0.7587
|
87 |
+
2023-10-17 15:56:47,707 saving best model
|
88 |
+
2023-10-17 15:56:48,068 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-17 15:56:52,901 epoch 2 - iter 72/723 - loss 0.10260098 - time (sec): 4.83 - samples/sec: 3443.65 - lr: 0.000049 - momentum: 0.000000
|
90 |
+
2023-10-17 15:56:58,055 epoch 2 - iter 144/723 - loss 0.09803331 - time (sec): 9.99 - samples/sec: 3398.30 - lr: 0.000049 - momentum: 0.000000
|
91 |
+
2023-10-17 15:57:03,377 epoch 2 - iter 216/723 - loss 0.09312094 - time (sec): 15.31 - samples/sec: 3353.09 - lr: 0.000048 - momentum: 0.000000
|
92 |
+
2023-10-17 15:57:08,520 epoch 2 - iter 288/723 - loss 0.08851617 - time (sec): 20.45 - samples/sec: 3347.48 - lr: 0.000048 - momentum: 0.000000
|
93 |
+
2023-10-17 15:57:13,975 epoch 2 - iter 360/723 - loss 0.08633661 - time (sec): 25.91 - samples/sec: 3349.76 - lr: 0.000047 - momentum: 0.000000
|
94 |
+
2023-10-17 15:57:19,512 epoch 2 - iter 432/723 - loss 0.08348871 - time (sec): 31.44 - samples/sec: 3367.52 - lr: 0.000047 - momentum: 0.000000
|
95 |
+
2023-10-17 15:57:24,687 epoch 2 - iter 504/723 - loss 0.08371297 - time (sec): 36.62 - samples/sec: 3351.57 - lr: 0.000046 - momentum: 0.000000
|
96 |
+
2023-10-17 15:57:30,095 epoch 2 - iter 576/723 - loss 0.08416410 - time (sec): 42.03 - samples/sec: 3342.54 - lr: 0.000046 - momentum: 0.000000
|
97 |
+
2023-10-17 15:57:35,291 epoch 2 - iter 648/723 - loss 0.08466015 - time (sec): 47.22 - samples/sec: 3334.28 - lr: 0.000045 - momentum: 0.000000
|
98 |
+
2023-10-17 15:57:40,848 epoch 2 - iter 720/723 - loss 0.08309979 - time (sec): 52.78 - samples/sec: 3329.87 - lr: 0.000044 - momentum: 0.000000
|
99 |
+
2023-10-17 15:57:40,989 ----------------------------------------------------------------------------------------------------
|
100 |
+
2023-10-17 15:57:40,990 EPOCH 2 done: loss 0.0831 - lr: 0.000044
|
101 |
+
2023-10-17 15:57:45,313 DEV : loss 0.08019406348466873 - f1-score (micro avg) 0.7932
|
102 |
+
2023-10-17 15:57:45,342 saving best model
|
103 |
+
2023-10-17 15:57:45,877 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-17 15:57:51,210 epoch 3 - iter 72/723 - loss 0.06351360 - time (sec): 5.33 - samples/sec: 3259.26 - lr: 0.000044 - momentum: 0.000000
|
105 |
+
2023-10-17 15:57:56,293 epoch 3 - iter 144/723 - loss 0.06222447 - time (sec): 10.41 - samples/sec: 3325.69 - lr: 0.000043 - momentum: 0.000000
|
106 |
+
2023-10-17 15:58:01,784 epoch 3 - iter 216/723 - loss 0.05814085 - time (sec): 15.90 - samples/sec: 3370.01 - lr: 0.000043 - momentum: 0.000000
|
107 |
+
2023-10-17 15:58:06,838 epoch 3 - iter 288/723 - loss 0.05953396 - time (sec): 20.96 - samples/sec: 3374.65 - lr: 0.000042 - momentum: 0.000000
|
108 |
+
2023-10-17 15:58:11,731 epoch 3 - iter 360/723 - loss 0.05864225 - time (sec): 25.85 - samples/sec: 3384.29 - lr: 0.000042 - momentum: 0.000000
|
109 |
+
2023-10-17 15:58:16,914 epoch 3 - iter 432/723 - loss 0.05836093 - time (sec): 31.03 - samples/sec: 3393.36 - lr: 0.000041 - momentum: 0.000000
|
110 |
+
2023-10-17 15:58:22,123 epoch 3 - iter 504/723 - loss 0.05729257 - time (sec): 36.24 - samples/sec: 3367.08 - lr: 0.000041 - momentum: 0.000000
|
111 |
+
2023-10-17 15:58:27,144 epoch 3 - iter 576/723 - loss 0.05782325 - time (sec): 41.26 - samples/sec: 3380.00 - lr: 0.000040 - momentum: 0.000000
|
112 |
+
2023-10-17 15:58:32,502 epoch 3 - iter 648/723 - loss 0.05829220 - time (sec): 46.62 - samples/sec: 3381.03 - lr: 0.000039 - momentum: 0.000000
|
113 |
+
2023-10-17 15:58:37,805 epoch 3 - iter 720/723 - loss 0.05769844 - time (sec): 51.93 - samples/sec: 3385.52 - lr: 0.000039 - momentum: 0.000000
|
114 |
+
2023-10-17 15:58:37,963 ----------------------------------------------------------------------------------------------------
|
115 |
+
2023-10-17 15:58:37,963 EPOCH 3 done: loss 0.0579 - lr: 0.000039
|
116 |
+
2023-10-17 15:58:41,429 DEV : loss 0.07650606334209442 - f1-score (micro avg) 0.861
|
117 |
+
2023-10-17 15:58:41,449 saving best model
|
118 |
+
2023-10-17 15:58:42,093 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-17 15:58:47,673 epoch 4 - iter 72/723 - loss 0.03823239 - time (sec): 5.57 - samples/sec: 3273.99 - lr: 0.000038 - momentum: 0.000000
|
120 |
+
2023-10-17 15:58:53,016 epoch 4 - iter 144/723 - loss 0.04683747 - time (sec): 10.92 - samples/sec: 3257.37 - lr: 0.000038 - momentum: 0.000000
|
121 |
+
2023-10-17 15:58:58,126 epoch 4 - iter 216/723 - loss 0.04128104 - time (sec): 16.03 - samples/sec: 3301.87 - lr: 0.000037 - momentum: 0.000000
|
122 |
+
2023-10-17 15:59:03,292 epoch 4 - iter 288/723 - loss 0.04079176 - time (sec): 21.19 - samples/sec: 3317.40 - lr: 0.000037 - momentum: 0.000000
|
123 |
+
2023-10-17 15:59:08,209 epoch 4 - iter 360/723 - loss 0.04062909 - time (sec): 26.11 - samples/sec: 3328.56 - lr: 0.000036 - momentum: 0.000000
|
124 |
+
2023-10-17 15:59:13,592 epoch 4 - iter 432/723 - loss 0.04066133 - time (sec): 31.49 - samples/sec: 3318.86 - lr: 0.000036 - momentum: 0.000000
|
125 |
+
2023-10-17 15:59:19,610 epoch 4 - iter 504/723 - loss 0.04003049 - time (sec): 37.51 - samples/sec: 3260.74 - lr: 0.000035 - momentum: 0.000000
|
126 |
+
2023-10-17 15:59:24,910 epoch 4 - iter 576/723 - loss 0.03955197 - time (sec): 42.81 - samples/sec: 3267.84 - lr: 0.000034 - momentum: 0.000000
|
127 |
+
2023-10-17 15:59:30,268 epoch 4 - iter 648/723 - loss 0.03999115 - time (sec): 48.17 - samples/sec: 3272.18 - lr: 0.000034 - momentum: 0.000000
|
128 |
+
2023-10-17 15:59:35,731 epoch 4 - iter 720/723 - loss 0.04250353 - time (sec): 53.63 - samples/sec: 3277.71 - lr: 0.000033 - momentum: 0.000000
|
129 |
+
2023-10-17 15:59:35,904 ----------------------------------------------------------------------------------------------------
|
130 |
+
2023-10-17 15:59:35,904 EPOCH 4 done: loss 0.0424 - lr: 0.000033
|
131 |
+
2023-10-17 15:59:39,265 DEV : loss 0.07505105435848236 - f1-score (micro avg) 0.8508
|
132 |
+
2023-10-17 15:59:39,285 ----------------------------------------------------------------------------------------------------
|
133 |
+
2023-10-17 15:59:44,496 epoch 5 - iter 72/723 - loss 0.02322825 - time (sec): 5.21 - samples/sec: 3397.18 - lr: 0.000033 - momentum: 0.000000
|
134 |
+
2023-10-17 15:59:49,984 epoch 5 - iter 144/723 - loss 0.02522339 - time (sec): 10.70 - samples/sec: 3359.84 - lr: 0.000032 - momentum: 0.000000
|
135 |
+
2023-10-17 15:59:55,357 epoch 5 - iter 216/723 - loss 0.02748650 - time (sec): 16.07 - samples/sec: 3344.27 - lr: 0.000032 - momentum: 0.000000
|
136 |
+
2023-10-17 16:00:00,150 epoch 5 - iter 288/723 - loss 0.02774826 - time (sec): 20.86 - samples/sec: 3377.69 - lr: 0.000031 - momentum: 0.000000
|
137 |
+
2023-10-17 16:00:05,489 epoch 5 - iter 360/723 - loss 0.02809467 - time (sec): 26.20 - samples/sec: 3351.38 - lr: 0.000031 - momentum: 0.000000
|
138 |
+
2023-10-17 16:00:10,895 epoch 5 - iter 432/723 - loss 0.03187831 - time (sec): 31.61 - samples/sec: 3318.68 - lr: 0.000030 - momentum: 0.000000
|
139 |
+
2023-10-17 16:00:16,149 epoch 5 - iter 504/723 - loss 0.03247153 - time (sec): 36.86 - samples/sec: 3311.27 - lr: 0.000029 - momentum: 0.000000
|
140 |
+
2023-10-17 16:00:21,641 epoch 5 - iter 576/723 - loss 0.03216390 - time (sec): 42.35 - samples/sec: 3319.88 - lr: 0.000029 - momentum: 0.000000
|
141 |
+
2023-10-17 16:00:26,598 epoch 5 - iter 648/723 - loss 0.03247873 - time (sec): 47.31 - samples/sec: 3336.04 - lr: 0.000028 - momentum: 0.000000
|
142 |
+
2023-10-17 16:00:32,135 epoch 5 - iter 720/723 - loss 0.03226933 - time (sec): 52.85 - samples/sec: 3323.80 - lr: 0.000028 - momentum: 0.000000
|
143 |
+
2023-10-17 16:00:32,330 ----------------------------------------------------------------------------------------------------
|
144 |
+
2023-10-17 16:00:32,330 EPOCH 5 done: loss 0.0322 - lr: 0.000028
|
145 |
+
2023-10-17 16:00:36,192 DEV : loss 0.10498460382223129 - f1-score (micro avg) 0.8403
|
146 |
+
2023-10-17 16:00:36,211 ----------------------------------------------------------------------------------------------------
|
147 |
+
2023-10-17 16:00:41,618 epoch 6 - iter 72/723 - loss 0.02253230 - time (sec): 5.41 - samples/sec: 3237.77 - lr: 0.000027 - momentum: 0.000000
|
148 |
+
2023-10-17 16:00:46,772 epoch 6 - iter 144/723 - loss 0.02540519 - time (sec): 10.56 - samples/sec: 3223.17 - lr: 0.000027 - momentum: 0.000000
|
149 |
+
2023-10-17 16:00:52,011 epoch 6 - iter 216/723 - loss 0.02564947 - time (sec): 15.80 - samples/sec: 3265.77 - lr: 0.000026 - momentum: 0.000000
|
150 |
+
2023-10-17 16:00:57,844 epoch 6 - iter 288/723 - loss 0.02408256 - time (sec): 21.63 - samples/sec: 3226.31 - lr: 0.000026 - momentum: 0.000000
|
151 |
+
2023-10-17 16:01:03,415 epoch 6 - iter 360/723 - loss 0.02433276 - time (sec): 27.20 - samples/sec: 3234.82 - lr: 0.000025 - momentum: 0.000000
|
152 |
+
2023-10-17 16:01:08,535 epoch 6 - iter 432/723 - loss 0.02382939 - time (sec): 32.32 - samples/sec: 3230.90 - lr: 0.000024 - momentum: 0.000000
|
153 |
+
2023-10-17 16:01:13,688 epoch 6 - iter 504/723 - loss 0.02331952 - time (sec): 37.48 - samples/sec: 3270.35 - lr: 0.000024 - momentum: 0.000000
|
154 |
+
2023-10-17 16:01:18,912 epoch 6 - iter 576/723 - loss 0.02289724 - time (sec): 42.70 - samples/sec: 3256.96 - lr: 0.000023 - momentum: 0.000000
|
155 |
+
2023-10-17 16:01:24,284 epoch 6 - iter 648/723 - loss 0.02282930 - time (sec): 48.07 - samples/sec: 3260.65 - lr: 0.000023 - momentum: 0.000000
|
156 |
+
2023-10-17 16:01:29,834 epoch 6 - iter 720/723 - loss 0.02229213 - time (sec): 53.62 - samples/sec: 3272.85 - lr: 0.000022 - momentum: 0.000000
|
157 |
+
2023-10-17 16:01:30,026 ----------------------------------------------------------------------------------------------------
|
158 |
+
2023-10-17 16:01:30,027 EPOCH 6 done: loss 0.0222 - lr: 0.000022
|
159 |
+
2023-10-17 16:01:33,283 DEV : loss 0.10264434665441513 - f1-score (micro avg) 0.8651
|
160 |
+
2023-10-17 16:01:33,308 saving best model
|
161 |
+
2023-10-17 16:01:33,847 ----------------------------------------------------------------------------------------------------
|
162 |
+
2023-10-17 16:01:39,082 epoch 7 - iter 72/723 - loss 0.02479169 - time (sec): 5.23 - samples/sec: 3301.29 - lr: 0.000022 - momentum: 0.000000
|
163 |
+
2023-10-17 16:01:44,110 epoch 7 - iter 144/723 - loss 0.01936541 - time (sec): 10.26 - samples/sec: 3316.51 - lr: 0.000021 - momentum: 0.000000
|
164 |
+
2023-10-17 16:01:49,477 epoch 7 - iter 216/723 - loss 0.02032545 - time (sec): 15.63 - samples/sec: 3324.49 - lr: 0.000021 - momentum: 0.000000
|
165 |
+
2023-10-17 16:01:55,078 epoch 7 - iter 288/723 - loss 0.01949508 - time (sec): 21.23 - samples/sec: 3298.74 - lr: 0.000020 - momentum: 0.000000
|
166 |
+
2023-10-17 16:02:00,277 epoch 7 - iter 360/723 - loss 0.01828023 - time (sec): 26.43 - samples/sec: 3304.72 - lr: 0.000019 - momentum: 0.000000
|
167 |
+
2023-10-17 16:02:05,591 epoch 7 - iter 432/723 - loss 0.01757906 - time (sec): 31.74 - samples/sec: 3339.90 - lr: 0.000019 - momentum: 0.000000
|
168 |
+
2023-10-17 16:02:10,817 epoch 7 - iter 504/723 - loss 0.01601183 - time (sec): 36.97 - samples/sec: 3330.88 - lr: 0.000018 - momentum: 0.000000
|
169 |
+
2023-10-17 16:02:16,408 epoch 7 - iter 576/723 - loss 0.01523872 - time (sec): 42.56 - samples/sec: 3294.84 - lr: 0.000018 - momentum: 0.000000
|
170 |
+
2023-10-17 16:02:21,808 epoch 7 - iter 648/723 - loss 0.01596978 - time (sec): 47.96 - samples/sec: 3296.43 - lr: 0.000017 - momentum: 0.000000
|
171 |
+
2023-10-17 16:02:26,919 epoch 7 - iter 720/723 - loss 0.01592490 - time (sec): 53.07 - samples/sec: 3312.38 - lr: 0.000017 - momentum: 0.000000
|
172 |
+
2023-10-17 16:02:27,093 ----------------------------------------------------------------------------------------------------
|
173 |
+
2023-10-17 16:02:27,093 EPOCH 7 done: loss 0.0159 - lr: 0.000017
|
174 |
+
2023-10-17 16:02:30,303 DEV : loss 0.12677793204784393 - f1-score (micro avg) 0.8562
|
175 |
+
2023-10-17 16:02:30,320 ----------------------------------------------------------------------------------------------------
|
176 |
+
2023-10-17 16:02:35,341 epoch 8 - iter 72/723 - loss 0.00768027 - time (sec): 5.02 - samples/sec: 3216.93 - lr: 0.000016 - momentum: 0.000000
|
177 |
+
2023-10-17 16:02:40,992 epoch 8 - iter 144/723 - loss 0.00861469 - time (sec): 10.67 - samples/sec: 3237.83 - lr: 0.000016 - momentum: 0.000000
|
178 |
+
2023-10-17 16:02:45,889 epoch 8 - iter 216/723 - loss 0.00745035 - time (sec): 15.57 - samples/sec: 3359.60 - lr: 0.000015 - momentum: 0.000000
|
179 |
+
2023-10-17 16:02:51,120 epoch 8 - iter 288/723 - loss 0.00916909 - time (sec): 20.80 - samples/sec: 3319.12 - lr: 0.000014 - momentum: 0.000000
|
180 |
+
2023-10-17 16:02:56,348 epoch 8 - iter 360/723 - loss 0.00933421 - time (sec): 26.03 - samples/sec: 3307.99 - lr: 0.000014 - momentum: 0.000000
|
181 |
+
2023-10-17 16:03:02,032 epoch 8 - iter 432/723 - loss 0.00912919 - time (sec): 31.71 - samples/sec: 3297.77 - lr: 0.000013 - momentum: 0.000000
|
182 |
+
2023-10-17 16:03:07,157 epoch 8 - iter 504/723 - loss 0.00939804 - time (sec): 36.84 - samples/sec: 3322.55 - lr: 0.000013 - momentum: 0.000000
|
183 |
+
2023-10-17 16:03:12,227 epoch 8 - iter 576/723 - loss 0.00986990 - time (sec): 41.91 - samples/sec: 3323.69 - lr: 0.000012 - momentum: 0.000000
|
184 |
+
2023-10-17 16:03:17,717 epoch 8 - iter 648/723 - loss 0.00970328 - time (sec): 47.40 - samples/sec: 3330.36 - lr: 0.000012 - momentum: 0.000000
|
185 |
+
2023-10-17 16:03:22,900 epoch 8 - iter 720/723 - loss 0.01012613 - time (sec): 52.58 - samples/sec: 3337.38 - lr: 0.000011 - momentum: 0.000000
|
186 |
+
2023-10-17 16:03:23,135 ----------------------------------------------------------------------------------------------------
|
187 |
+
2023-10-17 16:03:23,136 EPOCH 8 done: loss 0.0101 - lr: 0.000011
|
188 |
+
2023-10-17 16:03:26,332 DEV : loss 0.1282780021429062 - f1-score (micro avg) 0.8682
|
189 |
+
2023-10-17 16:03:26,349 saving best model
|
190 |
+
2023-10-17 16:03:26,916 ----------------------------------------------------------------------------------------------------
|
191 |
+
2023-10-17 16:03:32,954 epoch 9 - iter 72/723 - loss 0.00707734 - time (sec): 6.03 - samples/sec: 3186.11 - lr: 0.000011 - momentum: 0.000000
|
192 |
+
2023-10-17 16:03:37,845 epoch 9 - iter 144/723 - loss 0.00625959 - time (sec): 10.92 - samples/sec: 3214.57 - lr: 0.000010 - momentum: 0.000000
|
193 |
+
2023-10-17 16:03:43,549 epoch 9 - iter 216/723 - loss 0.00647191 - time (sec): 16.62 - samples/sec: 3258.48 - lr: 0.000009 - momentum: 0.000000
|
194 |
+
2023-10-17 16:03:49,022 epoch 9 - iter 288/723 - loss 0.00700090 - time (sec): 22.10 - samples/sec: 3278.32 - lr: 0.000009 - momentum: 0.000000
|
195 |
+
2023-10-17 16:03:54,257 epoch 9 - iter 360/723 - loss 0.00711976 - time (sec): 27.33 - samples/sec: 3277.30 - lr: 0.000008 - momentum: 0.000000
|
196 |
+
2023-10-17 16:03:59,095 epoch 9 - iter 432/723 - loss 0.00675222 - time (sec): 32.17 - samples/sec: 3281.09 - lr: 0.000008 - momentum: 0.000000
|
197 |
+
2023-10-17 16:04:04,324 epoch 9 - iter 504/723 - loss 0.00726827 - time (sec): 37.40 - samples/sec: 3294.08 - lr: 0.000007 - momentum: 0.000000
|
198 |
+
2023-10-17 16:04:09,786 epoch 9 - iter 576/723 - loss 0.00751472 - time (sec): 42.86 - samples/sec: 3297.36 - lr: 0.000007 - momentum: 0.000000
|
199 |
+
2023-10-17 16:04:15,024 epoch 9 - iter 648/723 - loss 0.00706634 - time (sec): 48.10 - samples/sec: 3304.88 - lr: 0.000006 - momentum: 0.000000
|
200 |
+
2023-10-17 16:04:19,751 epoch 9 - iter 720/723 - loss 0.00724864 - time (sec): 52.82 - samples/sec: 3321.30 - lr: 0.000006 - momentum: 0.000000
|
201 |
+
2023-10-17 16:04:20,017 ----------------------------------------------------------------------------------------------------
|
202 |
+
2023-10-17 16:04:20,017 EPOCH 9 done: loss 0.0072 - lr: 0.000006
|
203 |
+
2023-10-17 16:04:23,192 DEV : loss 0.14683492481708527 - f1-score (micro avg) 0.8667
|
204 |
+
2023-10-17 16:04:23,209 ----------------------------------------------------------------------------------------------------
|
205 |
+
2023-10-17 16:04:28,333 epoch 10 - iter 72/723 - loss 0.00847938 - time (sec): 5.12 - samples/sec: 3406.42 - lr: 0.000005 - momentum: 0.000000
|
206 |
+
2023-10-17 16:04:33,664 epoch 10 - iter 144/723 - loss 0.00565771 - time (sec): 10.45 - samples/sec: 3353.37 - lr: 0.000004 - momentum: 0.000000
|
207 |
+
2023-10-17 16:04:38,677 epoch 10 - iter 216/723 - loss 0.00518803 - time (sec): 15.47 - samples/sec: 3342.28 - lr: 0.000004 - momentum: 0.000000
|
208 |
+
2023-10-17 16:04:43,557 epoch 10 - iter 288/723 - loss 0.00507785 - time (sec): 20.35 - samples/sec: 3339.28 - lr: 0.000003 - momentum: 0.000000
|
209 |
+
2023-10-17 16:04:49,150 epoch 10 - iter 360/723 - loss 0.00510449 - time (sec): 25.94 - samples/sec: 3341.65 - lr: 0.000003 - momentum: 0.000000
|
210 |
+
2023-10-17 16:04:54,672 epoch 10 - iter 432/723 - loss 0.00546394 - time (sec): 31.46 - samples/sec: 3349.75 - lr: 0.000002 - momentum: 0.000000
|
211 |
+
2023-10-17 16:04:59,864 epoch 10 - iter 504/723 - loss 0.00482428 - time (sec): 36.65 - samples/sec: 3329.56 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-10-17 16:05:05,555 epoch 10 - iter 576/723 - loss 0.00506029 - time (sec): 42.34 - samples/sec: 3308.61 - lr: 0.000001 - momentum: 0.000000
|
213 |
+
2023-10-17 16:05:10,771 epoch 10 - iter 648/723 - loss 0.00511610 - time (sec): 47.56 - samples/sec: 3324.46 - lr: 0.000001 - momentum: 0.000000
|
214 |
+
2023-10-17 16:05:16,035 epoch 10 - iter 720/723 - loss 0.00523258 - time (sec): 52.82 - samples/sec: 3326.99 - lr: 0.000000 - momentum: 0.000000
|
215 |
+
2023-10-17 16:05:16,193 ----------------------------------------------------------------------------------------------------
|
216 |
+
2023-10-17 16:05:16,193 EPOCH 10 done: loss 0.0052 - lr: 0.000000
|
217 |
+
2023-10-17 16:05:19,916 DEV : loss 0.14944744110107422 - f1-score (micro avg) 0.8688
|
218 |
+
2023-10-17 16:05:19,934 saving best model
|
219 |
+
2023-10-17 16:05:20,741 ----------------------------------------------------------------------------------------------------
|
220 |
+
2023-10-17 16:05:20,742 Loading model from best epoch ...
|
221 |
+
2023-10-17 16:05:22,172 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG
|
222 |
+
2023-10-17 16:05:25,188
|
223 |
+
Results:
|
224 |
+
- F-score (micro) 0.8476
|
225 |
+
- F-score (macro) 0.7371
|
226 |
+
- Accuracy 0.7448
|
227 |
+
|
228 |
+
By class:
|
229 |
+
precision recall f1-score support
|
230 |
+
|
231 |
+
PER 0.8633 0.8257 0.8441 482
|
232 |
+
LOC 0.9458 0.8755 0.9093 458
|
233 |
+
ORG 0.4839 0.4348 0.4580 69
|
234 |
+
|
235 |
+
micro avg 0.8754 0.8216 0.8476 1009
|
236 |
+
macro avg 0.7643 0.7120 0.7371 1009
|
237 |
+
weighted avg 0.8748 0.8216 0.8473 1009
|
238 |
+
|
239 |
+
2023-10-17 16:05:25,188 ----------------------------------------------------------------------------------------------------
|