Upload ./training.log with huggingface_hub
Browse files- training.log +506 -0
training.log
ADDED
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-25 03:21:07,036 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-25 03:21:07,036 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-25 03:21:07,037 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-25 03:21:07,037 MultiCorpus: 5777 train + 722 dev + 723 test sentences
|
316 |
+
- NER_ICDAR_EUROPEANA Corpus: 5777 train + 722 dev + 723 test sentences - /home/ubuntu/.flair/datasets/ner_icdar_europeana/nl
|
317 |
+
2023-10-25 03:21:07,037 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-25 03:21:07,037 Train: 5777 sentences
|
319 |
+
2023-10-25 03:21:07,037 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-25 03:21:07,037 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-25 03:21:07,037 Training Params:
|
322 |
+
2023-10-25 03:21:07,037 - learning_rate: "5e-05"
|
323 |
+
2023-10-25 03:21:07,037 - mini_batch_size: "8"
|
324 |
+
2023-10-25 03:21:07,037 - max_epochs: "10"
|
325 |
+
2023-10-25 03:21:07,037 - shuffle: "True"
|
326 |
+
2023-10-25 03:21:07,037 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-25 03:21:07,037 Plugins:
|
328 |
+
2023-10-25 03:21:07,037 - TensorboardLogger
|
329 |
+
2023-10-25 03:21:07,037 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-25 03:21:07,037 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-25 03:21:07,037 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-25 03:21:07,037 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-25 03:21:07,037 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-25 03:21:07,037 Computation:
|
335 |
+
2023-10-25 03:21:07,037 - compute on device: cuda:0
|
336 |
+
2023-10-25 03:21:07,037 - embedding storage: none
|
337 |
+
2023-10-25 03:21:07,037 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-25 03:21:07,037 Model training base path: "hmbench-icdar/nl-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
|
339 |
+
2023-10-25 03:21:07,037 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-25 03:21:07,038 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-25 03:21:07,038 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-25 03:21:15,767 epoch 1 - iter 72/723 - loss 1.68766467 - time (sec): 8.73 - samples/sec: 1919.80 - lr: 0.000005 - momentum: 0.000000
|
343 |
+
2023-10-25 03:21:23,724 epoch 1 - iter 144/723 - loss 0.99031859 - time (sec): 16.69 - samples/sec: 1975.15 - lr: 0.000010 - momentum: 0.000000
|
344 |
+
2023-10-25 03:21:32,094 epoch 1 - iter 216/723 - loss 0.71808221 - time (sec): 25.06 - samples/sec: 2003.67 - lr: 0.000015 - momentum: 0.000000
|
345 |
+
2023-10-25 03:21:40,978 epoch 1 - iter 288/723 - loss 0.57309784 - time (sec): 33.94 - samples/sec: 2017.52 - lr: 0.000020 - momentum: 0.000000
|
346 |
+
2023-10-25 03:21:49,174 epoch 1 - iter 360/723 - loss 0.49129012 - time (sec): 42.14 - samples/sec: 2020.68 - lr: 0.000025 - momentum: 0.000000
|
347 |
+
2023-10-25 03:21:57,936 epoch 1 - iter 432/723 - loss 0.43005413 - time (sec): 50.90 - samples/sec: 2038.58 - lr: 0.000030 - momentum: 0.000000
|
348 |
+
2023-10-25 03:22:06,610 epoch 1 - iter 504/723 - loss 0.38879308 - time (sec): 59.57 - samples/sec: 2042.37 - lr: 0.000035 - momentum: 0.000000
|
349 |
+
2023-10-25 03:22:15,073 epoch 1 - iter 576/723 - loss 0.35796702 - time (sec): 68.03 - samples/sec: 2041.20 - lr: 0.000040 - momentum: 0.000000
|
350 |
+
2023-10-25 03:22:24,126 epoch 1 - iter 648/723 - loss 0.33078723 - time (sec): 77.09 - samples/sec: 2042.41 - lr: 0.000045 - momentum: 0.000000
|
351 |
+
2023-10-25 03:22:33,094 epoch 1 - iter 720/723 - loss 0.31081390 - time (sec): 86.06 - samples/sec: 2040.23 - lr: 0.000050 - momentum: 0.000000
|
352 |
+
2023-10-25 03:22:33,419 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-25 03:22:33,420 EPOCH 1 done: loss 0.3102 - lr: 0.000050
|
354 |
+
2023-10-25 03:22:36,444 DEV : loss 0.10029962658882141 - f1-score (micro avg) 0.714
|
355 |
+
2023-10-25 03:22:36,455 saving best model
|
356 |
+
2023-10-25 03:22:36,922 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-25 03:22:45,659 epoch 2 - iter 72/723 - loss 0.12090345 - time (sec): 8.74 - samples/sec: 1958.50 - lr: 0.000049 - momentum: 0.000000
|
358 |
+
2023-10-25 03:22:53,891 epoch 2 - iter 144/723 - loss 0.11010184 - time (sec): 16.97 - samples/sec: 2023.18 - lr: 0.000049 - momentum: 0.000000
|
359 |
+
2023-10-25 03:23:02,247 epoch 2 - iter 216/723 - loss 0.10565874 - time (sec): 25.32 - samples/sec: 2041.71 - lr: 0.000048 - momentum: 0.000000
|
360 |
+
2023-10-25 03:23:10,874 epoch 2 - iter 288/723 - loss 0.10233445 - time (sec): 33.95 - samples/sec: 2038.73 - lr: 0.000048 - momentum: 0.000000
|
361 |
+
2023-10-25 03:23:19,521 epoch 2 - iter 360/723 - loss 0.09988170 - time (sec): 42.60 - samples/sec: 2031.02 - lr: 0.000047 - momentum: 0.000000
|
362 |
+
2023-10-25 03:23:28,031 epoch 2 - iter 432/723 - loss 0.09714710 - time (sec): 51.11 - samples/sec: 2031.30 - lr: 0.000047 - momentum: 0.000000
|
363 |
+
2023-10-25 03:23:36,548 epoch 2 - iter 504/723 - loss 0.09721388 - time (sec): 59.62 - samples/sec: 2030.47 - lr: 0.000046 - momentum: 0.000000
|
364 |
+
2023-10-25 03:23:44,959 epoch 2 - iter 576/723 - loss 0.09638112 - time (sec): 68.04 - samples/sec: 2035.31 - lr: 0.000046 - momentum: 0.000000
|
365 |
+
2023-10-25 03:23:54,130 epoch 2 - iter 648/723 - loss 0.09712113 - time (sec): 77.21 - samples/sec: 2032.68 - lr: 0.000045 - momentum: 0.000000
|
366 |
+
2023-10-25 03:24:03,482 epoch 2 - iter 720/723 - loss 0.09496368 - time (sec): 86.56 - samples/sec: 2029.14 - lr: 0.000044 - momentum: 0.000000
|
367 |
+
2023-10-25 03:24:03,845 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-25 03:24:03,845 EPOCH 2 done: loss 0.0951 - lr: 0.000044
|
369 |
+
2023-10-25 03:24:07,270 DEV : loss 0.08907141536474228 - f1-score (micro avg) 0.7752
|
370 |
+
2023-10-25 03:24:07,282 saving best model
|
371 |
+
2023-10-25 03:24:07,866 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-25 03:24:16,521 epoch 3 - iter 72/723 - loss 0.05697145 - time (sec): 8.65 - samples/sec: 1979.04 - lr: 0.000044 - momentum: 0.000000
|
373 |
+
2023-10-25 03:24:25,015 epoch 3 - iter 144/723 - loss 0.06365511 - time (sec): 17.15 - samples/sec: 2016.66 - lr: 0.000043 - momentum: 0.000000
|
374 |
+
2023-10-25 03:24:34,291 epoch 3 - iter 216/723 - loss 0.06006955 - time (sec): 26.42 - samples/sec: 2028.12 - lr: 0.000043 - momentum: 0.000000
|
375 |
+
2023-10-25 03:24:42,967 epoch 3 - iter 288/723 - loss 0.05978662 - time (sec): 35.10 - samples/sec: 2039.51 - lr: 0.000042 - momentum: 0.000000
|
376 |
+
2023-10-25 03:24:51,561 epoch 3 - iter 360/723 - loss 0.06048031 - time (sec): 43.69 - samples/sec: 2052.41 - lr: 0.000042 - momentum: 0.000000
|
377 |
+
2023-10-25 03:24:59,876 epoch 3 - iter 432/723 - loss 0.06265153 - time (sec): 52.01 - samples/sec: 2048.22 - lr: 0.000041 - momentum: 0.000000
|
378 |
+
2023-10-25 03:25:08,066 epoch 3 - iter 504/723 - loss 0.06140349 - time (sec): 60.20 - samples/sec: 2048.19 - lr: 0.000041 - momentum: 0.000000
|
379 |
+
2023-10-25 03:25:16,386 epoch 3 - iter 576/723 - loss 0.06149397 - time (sec): 68.52 - samples/sec: 2052.30 - lr: 0.000040 - momentum: 0.000000
|
380 |
+
2023-10-25 03:25:24,635 epoch 3 - iter 648/723 - loss 0.06212052 - time (sec): 76.77 - samples/sec: 2055.82 - lr: 0.000039 - momentum: 0.000000
|
381 |
+
2023-10-25 03:25:33,470 epoch 3 - iter 720/723 - loss 0.06192748 - time (sec): 85.60 - samples/sec: 2049.87 - lr: 0.000039 - momentum: 0.000000
|
382 |
+
2023-10-25 03:25:33,882 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-25 03:25:33,883 EPOCH 3 done: loss 0.0618 - lr: 0.000039
|
384 |
+
2023-10-25 03:25:37,591 DEV : loss 0.08058985322713852 - f1-score (micro avg) 0.8289
|
385 |
+
2023-10-25 03:25:37,603 saving best model
|
386 |
+
2023-10-25 03:25:38,165 ----------------------------------------------------------------------------------------------------
|
387 |
+
2023-10-25 03:25:46,598 epoch 4 - iter 72/723 - loss 0.02797752 - time (sec): 8.43 - samples/sec: 1994.47 - lr: 0.000038 - momentum: 0.000000
|
388 |
+
2023-10-25 03:25:55,309 epoch 4 - iter 144/723 - loss 0.03614415 - time (sec): 17.14 - samples/sec: 2030.17 - lr: 0.000038 - momentum: 0.000000
|
389 |
+
2023-10-25 03:26:04,448 epoch 4 - iter 216/723 - loss 0.04145400 - time (sec): 26.28 - samples/sec: 2028.97 - lr: 0.000037 - momentum: 0.000000
|
390 |
+
2023-10-25 03:26:13,754 epoch 4 - iter 288/723 - loss 0.04451492 - time (sec): 35.59 - samples/sec: 1996.38 - lr: 0.000037 - momentum: 0.000000
|
391 |
+
2023-10-25 03:26:22,376 epoch 4 - iter 360/723 - loss 0.04603311 - time (sec): 44.21 - samples/sec: 2007.61 - lr: 0.000036 - momentum: 0.000000
|
392 |
+
2023-10-25 03:26:30,692 epoch 4 - iter 432/723 - loss 0.04476476 - time (sec): 52.53 - samples/sec: 2006.73 - lr: 0.000036 - momentum: 0.000000
|
393 |
+
2023-10-25 03:26:39,615 epoch 4 - iter 504/723 - loss 0.04287179 - time (sec): 61.45 - samples/sec: 2021.07 - lr: 0.000035 - momentum: 0.000000
|
394 |
+
2023-10-25 03:26:48,061 epoch 4 - iter 576/723 - loss 0.04179019 - time (sec): 69.89 - samples/sec: 2023.56 - lr: 0.000034 - momentum: 0.000000
|
395 |
+
2023-10-25 03:26:55,925 epoch 4 - iter 648/723 - loss 0.04178069 - time (sec): 77.76 - samples/sec: 2029.52 - lr: 0.000034 - momentum: 0.000000
|
396 |
+
2023-10-25 03:27:04,356 epoch 4 - iter 720/723 - loss 0.04186433 - time (sec): 86.19 - samples/sec: 2040.59 - lr: 0.000033 - momentum: 0.000000
|
397 |
+
2023-10-25 03:27:04,610 ----------------------------------------------------------------------------------------------------
|
398 |
+
2023-10-25 03:27:04,610 EPOCH 4 done: loss 0.0419 - lr: 0.000033
|
399 |
+
2023-10-25 03:27:08,040 DEV : loss 0.10547219961881638 - f1-score (micro avg) 0.8136
|
400 |
+
2023-10-25 03:27:08,051 ----------------------------------------------------------------------------------------------------
|
401 |
+
2023-10-25 03:27:16,658 epoch 5 - iter 72/723 - loss 0.03237456 - time (sec): 8.61 - samples/sec: 2057.62 - lr: 0.000033 - momentum: 0.000000
|
402 |
+
2023-10-25 03:27:25,600 epoch 5 - iter 144/723 - loss 0.03452148 - time (sec): 17.55 - samples/sec: 2018.99 - lr: 0.000032 - momentum: 0.000000
|
403 |
+
2023-10-25 03:27:33,985 epoch 5 - iter 216/723 - loss 0.03349648 - time (sec): 25.93 - samples/sec: 2037.16 - lr: 0.000032 - momentum: 0.000000
|
404 |
+
2023-10-25 03:27:42,171 epoch 5 - iter 288/723 - loss 0.03304803 - time (sec): 34.12 - samples/sec: 2027.60 - lr: 0.000031 - momentum: 0.000000
|
405 |
+
2023-10-25 03:27:50,434 epoch 5 - iter 360/723 - loss 0.03166254 - time (sec): 42.38 - samples/sec: 2034.44 - lr: 0.000031 - momentum: 0.000000
|
406 |
+
2023-10-25 03:27:59,929 epoch 5 - iter 432/723 - loss 0.02996305 - time (sec): 51.88 - samples/sec: 2016.91 - lr: 0.000030 - momentum: 0.000000
|
407 |
+
2023-10-25 03:28:08,267 epoch 5 - iter 504/723 - loss 0.03108088 - time (sec): 60.21 - samples/sec: 2017.39 - lr: 0.000029 - momentum: 0.000000
|
408 |
+
2023-10-25 03:28:17,112 epoch 5 - iter 576/723 - loss 0.03441065 - time (sec): 69.06 - samples/sec: 2021.48 - lr: 0.000029 - momentum: 0.000000
|
409 |
+
2023-10-25 03:28:26,189 epoch 5 - iter 648/723 - loss 0.03309049 - time (sec): 78.14 - samples/sec: 2025.80 - lr: 0.000028 - momentum: 0.000000
|
410 |
+
2023-10-25 03:28:34,845 epoch 5 - iter 720/723 - loss 0.03290640 - time (sec): 86.79 - samples/sec: 2025.49 - lr: 0.000028 - momentum: 0.000000
|
411 |
+
2023-10-25 03:28:35,078 ----------------------------------------------------------------------------------------------------
|
412 |
+
2023-10-25 03:28:35,078 EPOCH 5 done: loss 0.0329 - lr: 0.000028
|
413 |
+
2023-10-25 03:28:38,506 DEV : loss 0.10743129253387451 - f1-score (micro avg) 0.8259
|
414 |
+
2023-10-25 03:28:38,518 ----------------------------------------------------------------------------------------------------
|
415 |
+
2023-10-25 03:28:47,146 epoch 6 - iter 72/723 - loss 0.01950180 - time (sec): 8.63 - samples/sec: 2088.78 - lr: 0.000027 - momentum: 0.000000
|
416 |
+
2023-10-25 03:28:54,838 epoch 6 - iter 144/723 - loss 0.02431246 - time (sec): 16.32 - samples/sec: 2088.92 - lr: 0.000027 - momentum: 0.000000
|
417 |
+
2023-10-25 03:29:03,341 epoch 6 - iter 216/723 - loss 0.02554660 - time (sec): 24.82 - samples/sec: 2097.06 - lr: 0.000026 - momentum: 0.000000
|
418 |
+
2023-10-25 03:29:12,960 epoch 6 - iter 288/723 - loss 0.02489555 - time (sec): 34.44 - samples/sec: 2067.63 - lr: 0.000026 - momentum: 0.000000
|
419 |
+
2023-10-25 03:29:21,612 epoch 6 - iter 360/723 - loss 0.02519088 - time (sec): 43.09 - samples/sec: 2065.88 - lr: 0.000025 - momentum: 0.000000
|
420 |
+
2023-10-25 03:29:30,520 epoch 6 - iter 432/723 - loss 0.02472334 - time (sec): 52.00 - samples/sec: 2055.69 - lr: 0.000024 - momentum: 0.000000
|
421 |
+
2023-10-25 03:29:39,539 epoch 6 - iter 504/723 - loss 0.02448090 - time (sec): 61.02 - samples/sec: 2041.79 - lr: 0.000024 - momentum: 0.000000
|
422 |
+
2023-10-25 03:29:47,981 epoch 6 - iter 576/723 - loss 0.02586243 - time (sec): 69.46 - samples/sec: 2041.93 - lr: 0.000023 - momentum: 0.000000
|
423 |
+
2023-10-25 03:29:55,961 epoch 6 - iter 648/723 - loss 0.02606734 - time (sec): 77.44 - samples/sec: 2044.90 - lr: 0.000023 - momentum: 0.000000
|
424 |
+
2023-10-25 03:30:04,986 epoch 6 - iter 720/723 - loss 0.02562324 - time (sec): 86.47 - samples/sec: 2032.59 - lr: 0.000022 - momentum: 0.000000
|
425 |
+
2023-10-25 03:30:05,288 ----------------------------------------------------------------------------------------------------
|
426 |
+
2023-10-25 03:30:05,288 EPOCH 6 done: loss 0.0257 - lr: 0.000022
|
427 |
+
2023-10-25 03:30:09,014 DEV : loss 0.14865967631340027 - f1-score (micro avg) 0.8278
|
428 |
+
2023-10-25 03:30:09,026 ----------------------------------------------------------------------------------------------------
|
429 |
+
2023-10-25 03:30:17,847 epoch 7 - iter 72/723 - loss 0.01296776 - time (sec): 8.82 - samples/sec: 2066.52 - lr: 0.000022 - momentum: 0.000000
|
430 |
+
2023-10-25 03:30:26,902 epoch 7 - iter 144/723 - loss 0.01515821 - time (sec): 17.87 - samples/sec: 2044.78 - lr: 0.000021 - momentum: 0.000000
|
431 |
+
2023-10-25 03:30:35,247 epoch 7 - iter 216/723 - loss 0.01484702 - time (sec): 26.22 - samples/sec: 2036.37 - lr: 0.000021 - momentum: 0.000000
|
432 |
+
2023-10-25 03:30:44,046 epoch 7 - iter 288/723 - loss 0.01579797 - time (sec): 35.02 - samples/sec: 2029.75 - lr: 0.000020 - momentum: 0.000000
|
433 |
+
2023-10-25 03:30:52,631 epoch 7 - iter 360/723 - loss 0.01628311 - time (sec): 43.60 - samples/sec: 2030.46 - lr: 0.000019 - momentum: 0.000000
|
434 |
+
2023-10-25 03:31:01,153 epoch 7 - iter 432/723 - loss 0.01613784 - time (sec): 52.13 - samples/sec: 2033.21 - lr: 0.000019 - momentum: 0.000000
|
435 |
+
2023-10-25 03:31:09,837 epoch 7 - iter 504/723 - loss 0.01677860 - time (sec): 60.81 - samples/sec: 2024.48 - lr: 0.000018 - momentum: 0.000000
|
436 |
+
2023-10-25 03:31:18,928 epoch 7 - iter 576/723 - loss 0.01663651 - time (sec): 69.90 - samples/sec: 2025.46 - lr: 0.000018 - momentum: 0.000000
|
437 |
+
2023-10-25 03:31:27,367 epoch 7 - iter 648/723 - loss 0.01651969 - time (sec): 78.34 - samples/sec: 2028.03 - lr: 0.000017 - momentum: 0.000000
|
438 |
+
2023-10-25 03:31:35,458 epoch 7 - iter 720/723 - loss 0.01681181 - time (sec): 86.43 - samples/sec: 2030.51 - lr: 0.000017 - momentum: 0.000000
|
439 |
+
2023-10-25 03:31:35,920 ----------------------------------------------------------------------------------------------------
|
440 |
+
2023-10-25 03:31:35,920 EPOCH 7 done: loss 0.0168 - lr: 0.000017
|
441 |
+
2023-10-25 03:31:39,682 DEV : loss 0.15617409348487854 - f1-score (micro avg) 0.8255
|
442 |
+
2023-10-25 03:31:39,694 ----------------------------------------------------------------------------------------------------
|
443 |
+
2023-10-25 03:31:48,026 epoch 8 - iter 72/723 - loss 0.01544069 - time (sec): 8.33 - samples/sec: 2031.15 - lr: 0.000016 - momentum: 0.000000
|
444 |
+
2023-10-25 03:31:56,092 epoch 8 - iter 144/723 - loss 0.01094618 - time (sec): 16.40 - samples/sec: 2069.54 - lr: 0.000016 - momentum: 0.000000
|
445 |
+
2023-10-25 03:32:04,253 epoch 8 - iter 216/723 - loss 0.01140394 - time (sec): 24.56 - samples/sec: 2055.24 - lr: 0.000015 - momentum: 0.000000
|
446 |
+
2023-10-25 03:32:12,929 epoch 8 - iter 288/723 - loss 0.01145852 - time (sec): 33.23 - samples/sec: 2030.80 - lr: 0.000014 - momentum: 0.000000
|
447 |
+
2023-10-25 03:32:21,548 epoch 8 - iter 360/723 - loss 0.01128244 - time (sec): 41.85 - samples/sec: 2028.57 - lr: 0.000014 - momentum: 0.000000
|
448 |
+
2023-10-25 03:32:30,258 epoch 8 - iter 432/723 - loss 0.01132223 - time (sec): 50.56 - samples/sec: 2029.34 - lr: 0.000013 - momentum: 0.000000
|
449 |
+
2023-10-25 03:32:39,319 epoch 8 - iter 504/723 - loss 0.01152129 - time (sec): 59.62 - samples/sec: 2012.44 - lr: 0.000013 - momentum: 0.000000
|
450 |
+
2023-10-25 03:32:47,863 epoch 8 - iter 576/723 - loss 0.01234181 - time (sec): 68.17 - samples/sec: 2017.87 - lr: 0.000012 - momentum: 0.000000
|
451 |
+
2023-10-25 03:32:56,530 epoch 8 - iter 648/723 - loss 0.01271235 - time (sec): 76.83 - samples/sec: 2033.67 - lr: 0.000012 - momentum: 0.000000
|
452 |
+
2023-10-25 03:33:06,090 epoch 8 - iter 720/723 - loss 0.01201023 - time (sec): 86.40 - samples/sec: 2032.91 - lr: 0.000011 - momentum: 0.000000
|
453 |
+
2023-10-25 03:33:06,338 ----------------------------------------------------------------------------------------------------
|
454 |
+
2023-10-25 03:33:06,338 EPOCH 8 done: loss 0.0120 - lr: 0.000011
|
455 |
+
2023-10-25 03:33:09,773 DEV : loss 0.17202885448932648 - f1-score (micro avg) 0.8299
|
456 |
+
2023-10-25 03:33:09,785 saving best model
|
457 |
+
2023-10-25 03:33:10,374 ----------------------------------------------------------------------------------------------------
|
458 |
+
2023-10-25 03:33:19,969 epoch 9 - iter 72/723 - loss 0.01007116 - time (sec): 9.59 - samples/sec: 1891.90 - lr: 0.000011 - momentum: 0.000000
|
459 |
+
2023-10-25 03:33:28,571 epoch 9 - iter 144/723 - loss 0.01044210 - time (sec): 18.20 - samples/sec: 1982.50 - lr: 0.000010 - momentum: 0.000000
|
460 |
+
2023-10-25 03:33:37,499 epoch 9 - iter 216/723 - loss 0.01026889 - time (sec): 27.12 - samples/sec: 2014.27 - lr: 0.000009 - momentum: 0.000000
|
461 |
+
2023-10-25 03:33:46,186 epoch 9 - iter 288/723 - loss 0.00973665 - time (sec): 35.81 - samples/sec: 2022.23 - lr: 0.000009 - momentum: 0.000000
|
462 |
+
2023-10-25 03:33:54,191 epoch 9 - iter 360/723 - loss 0.00955647 - time (sec): 43.82 - samples/sec: 2027.79 - lr: 0.000008 - momentum: 0.000000
|
463 |
+
2023-10-25 03:34:02,428 epoch 9 - iter 432/723 - loss 0.00922189 - time (sec): 52.05 - samples/sec: 2024.17 - lr: 0.000008 - momentum: 0.000000
|
464 |
+
2023-10-25 03:34:11,130 epoch 9 - iter 504/723 - loss 0.00851347 - time (sec): 60.76 - samples/sec: 2033.68 - lr: 0.000007 - momentum: 0.000000
|
465 |
+
2023-10-25 03:34:19,732 epoch 9 - iter 576/723 - loss 0.00799039 - time (sec): 69.36 - samples/sec: 2034.77 - lr: 0.000007 - momentum: 0.000000
|
466 |
+
2023-10-25 03:34:28,576 epoch 9 - iter 648/723 - loss 0.00810368 - time (sec): 78.20 - samples/sec: 2031.04 - lr: 0.000006 - momentum: 0.000000
|
467 |
+
2023-10-25 03:34:36,912 epoch 9 - iter 720/723 - loss 0.00785735 - time (sec): 86.54 - samples/sec: 2031.17 - lr: 0.000006 - momentum: 0.000000
|
468 |
+
2023-10-25 03:34:37,188 ----------------------------------------------------------------------------------------------------
|
469 |
+
2023-10-25 03:34:37,188 EPOCH 9 done: loss 0.0078 - lr: 0.000006
|
470 |
+
2023-10-25 03:34:40,919 DEV : loss 0.17869263887405396 - f1-score (micro avg) 0.8368
|
471 |
+
2023-10-25 03:34:40,931 saving best model
|
472 |
+
2023-10-25 03:34:41,550 ----------------------------------------------------------------------------------------------------
|
473 |
+
2023-10-25 03:34:50,569 epoch 10 - iter 72/723 - loss 0.00494847 - time (sec): 9.02 - samples/sec: 1973.49 - lr: 0.000005 - momentum: 0.000000
|
474 |
+
2023-10-25 03:34:59,482 epoch 10 - iter 144/723 - loss 0.00333403 - time (sec): 17.93 - samples/sec: 1997.15 - lr: 0.000004 - momentum: 0.000000
|
475 |
+
2023-10-25 03:35:07,959 epoch 10 - iter 216/723 - loss 0.00471172 - time (sec): 26.41 - samples/sec: 1988.70 - lr: 0.000004 - momentum: 0.000000
|
476 |
+
2023-10-25 03:35:16,347 epoch 10 - iter 288/723 - loss 0.00424818 - time (sec): 34.80 - samples/sec: 1996.50 - lr: 0.000003 - momentum: 0.000000
|
477 |
+
2023-10-25 03:35:25,001 epoch 10 - iter 360/723 - loss 0.00450474 - time (sec): 43.45 - samples/sec: 1992.80 - lr: 0.000003 - momentum: 0.000000
|
478 |
+
2023-10-25 03:35:33,557 epoch 10 - iter 432/723 - loss 0.00435067 - time (sec): 52.01 - samples/sec: 2004.72 - lr: 0.000002 - momentum: 0.000000
|
479 |
+
2023-10-25 03:35:42,304 epoch 10 - iter 504/723 - loss 0.00425906 - time (sec): 60.75 - samples/sec: 1998.60 - lr: 0.000002 - momentum: 0.000000
|
480 |
+
2023-10-25 03:35:51,059 epoch 10 - iter 576/723 - loss 0.00465530 - time (sec): 69.51 - samples/sec: 1988.71 - lr: 0.000001 - momentum: 0.000000
|
481 |
+
2023-10-25 03:36:00,064 epoch 10 - iter 648/723 - loss 0.00486187 - time (sec): 78.51 - samples/sec: 1994.27 - lr: 0.000001 - momentum: 0.000000
|
482 |
+
2023-10-25 03:36:09,002 epoch 10 - iter 720/723 - loss 0.00532142 - time (sec): 87.45 - samples/sec: 2007.26 - lr: 0.000000 - momentum: 0.000000
|
483 |
+
2023-10-25 03:36:09,280 ----------------------------------------------------------------------------------------------------
|
484 |
+
2023-10-25 03:36:09,281 EPOCH 10 done: loss 0.0053 - lr: 0.000000
|
485 |
+
2023-10-25 03:36:12,707 DEV : loss 0.18416795134544373 - f1-score (micro avg) 0.834
|
486 |
+
2023-10-25 03:36:13,192 ----------------------------------------------------------------------------------------------------
|
487 |
+
2023-10-25 03:36:13,193 Loading model from best epoch ...
|
488 |
+
2023-10-25 03:36:15,267 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG
|
489 |
+
2023-10-25 03:36:18,515
|
490 |
+
Results:
|
491 |
+
- F-score (micro) 0.8085
|
492 |
+
- F-score (macro) 0.7291
|
493 |
+
- Accuracy 0.69
|
494 |
+
|
495 |
+
By class:
|
496 |
+
precision recall f1-score support
|
497 |
+
|
498 |
+
PER 0.8450 0.8029 0.8234 482
|
499 |
+
LOC 0.8802 0.7860 0.8304 458
|
500 |
+
ORG 0.6275 0.4638 0.5333 69
|
501 |
+
|
502 |
+
micro avg 0.8486 0.7721 0.8085 1009
|
503 |
+
macro avg 0.7842 0.6842 0.7291 1009
|
504 |
+
weighted avg 0.8461 0.7721 0.8068 1009
|
505 |
+
|
506 |
+
2023-10-25 03:36:18,515 ----------------------------------------------------------------------------------------------------
|