Upload ./training.log with huggingface_hub
Browse files- training.log +506 -0
training.log
ADDED
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-25 02:46:56,140 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-25 02:46:56,141 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-25 02:46:56,141 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-25 02:46:56,141 MultiCorpus: 5777 train + 722 dev + 723 test sentences
|
316 |
+
- NER_ICDAR_EUROPEANA Corpus: 5777 train + 722 dev + 723 test sentences - /home/ubuntu/.flair/datasets/ner_icdar_europeana/nl
|
317 |
+
2023-10-25 02:46:56,141 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-25 02:46:56,141 Train: 5777 sentences
|
319 |
+
2023-10-25 02:46:56,141 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-25 02:46:56,141 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-25 02:46:56,141 Training Params:
|
322 |
+
2023-10-25 02:46:56,141 - learning_rate: "5e-05"
|
323 |
+
2023-10-25 02:46:56,141 - mini_batch_size: "4"
|
324 |
+
2023-10-25 02:46:56,141 - max_epochs: "10"
|
325 |
+
2023-10-25 02:46:56,141 - shuffle: "True"
|
326 |
+
2023-10-25 02:46:56,141 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-25 02:46:56,141 Plugins:
|
328 |
+
2023-10-25 02:46:56,141 - TensorboardLogger
|
329 |
+
2023-10-25 02:46:56,141 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-25 02:46:56,141 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-25 02:46:56,141 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-25 02:46:56,141 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-25 02:46:56,141 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-25 02:46:56,141 Computation:
|
335 |
+
2023-10-25 02:46:56,141 - compute on device: cuda:0
|
336 |
+
2023-10-25 02:46:56,141 - embedding storage: none
|
337 |
+
2023-10-25 02:46:56,141 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-25 02:46:56,142 Model training base path: "hmbench-icdar/nl-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
|
339 |
+
2023-10-25 02:46:56,142 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-25 02:46:56,142 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-25 02:46:56,142 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-25 02:47:06,559 epoch 1 - iter 144/1445 - loss 1.41992500 - time (sec): 10.42 - samples/sec: 1608.70 - lr: 0.000005 - momentum: 0.000000
|
343 |
+
2023-10-25 02:47:16,662 epoch 1 - iter 288/1445 - loss 0.83750215 - time (sec): 20.52 - samples/sec: 1606.10 - lr: 0.000010 - momentum: 0.000000
|
344 |
+
2023-10-25 02:47:26,992 epoch 1 - iter 432/1445 - loss 0.61481097 - time (sec): 30.85 - samples/sec: 1627.37 - lr: 0.000015 - momentum: 0.000000
|
345 |
+
2023-10-25 02:47:37,751 epoch 1 - iter 576/1445 - loss 0.49739072 - time (sec): 41.61 - samples/sec: 1645.66 - lr: 0.000020 - momentum: 0.000000
|
346 |
+
2023-10-25 02:47:47,972 epoch 1 - iter 720/1445 - loss 0.43005049 - time (sec): 51.83 - samples/sec: 1642.73 - lr: 0.000025 - momentum: 0.000000
|
347 |
+
2023-10-25 02:47:58,593 epoch 1 - iter 864/1445 - loss 0.37973109 - time (sec): 62.45 - samples/sec: 1661.45 - lr: 0.000030 - momentum: 0.000000
|
348 |
+
2023-10-25 02:48:09,290 epoch 1 - iter 1008/1445 - loss 0.34700059 - time (sec): 73.15 - samples/sec: 1663.30 - lr: 0.000035 - momentum: 0.000000
|
349 |
+
2023-10-25 02:48:19,641 epoch 1 - iter 1152/1445 - loss 0.32342178 - time (sec): 83.50 - samples/sec: 1663.16 - lr: 0.000040 - momentum: 0.000000
|
350 |
+
2023-10-25 02:48:30,241 epoch 1 - iter 1296/1445 - loss 0.30192614 - time (sec): 94.10 - samples/sec: 1673.20 - lr: 0.000045 - momentum: 0.000000
|
351 |
+
2023-10-25 02:48:41,018 epoch 1 - iter 1440/1445 - loss 0.28526748 - time (sec): 104.88 - samples/sec: 1674.11 - lr: 0.000050 - momentum: 0.000000
|
352 |
+
2023-10-25 02:48:41,391 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-25 02:48:41,391 EPOCH 1 done: loss 0.2846 - lr: 0.000050
|
354 |
+
2023-10-25 02:48:44,710 DEV : loss 0.1542755663394928 - f1-score (micro avg) 0.6051
|
355 |
+
2023-10-25 02:48:44,722 saving best model
|
356 |
+
2023-10-25 02:48:45,190 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-25 02:48:55,635 epoch 2 - iter 144/1445 - loss 0.13673856 - time (sec): 10.44 - samples/sec: 1638.04 - lr: 0.000049 - momentum: 0.000000
|
358 |
+
2023-10-25 02:49:05,928 epoch 2 - iter 288/1445 - loss 0.12547644 - time (sec): 20.74 - samples/sec: 1655.38 - lr: 0.000049 - momentum: 0.000000
|
359 |
+
2023-10-25 02:49:16,263 epoch 2 - iter 432/1445 - loss 0.12065053 - time (sec): 31.07 - samples/sec: 1663.96 - lr: 0.000048 - momentum: 0.000000
|
360 |
+
2023-10-25 02:49:26,771 epoch 2 - iter 576/1445 - loss 0.11765343 - time (sec): 41.58 - samples/sec: 1664.67 - lr: 0.000048 - momentum: 0.000000
|
361 |
+
2023-10-25 02:49:37,344 epoch 2 - iter 720/1445 - loss 0.11380688 - time (sec): 52.15 - samples/sec: 1658.88 - lr: 0.000047 - momentum: 0.000000
|
362 |
+
2023-10-25 02:49:47,754 epoch 2 - iter 864/1445 - loss 0.10924427 - time (sec): 62.56 - samples/sec: 1659.33 - lr: 0.000047 - momentum: 0.000000
|
363 |
+
2023-10-25 02:49:58,240 epoch 2 - iter 1008/1445 - loss 0.10937149 - time (sec): 73.05 - samples/sec: 1657.31 - lr: 0.000046 - momentum: 0.000000
|
364 |
+
2023-10-25 02:50:08,713 epoch 2 - iter 1152/1445 - loss 0.10758530 - time (sec): 83.52 - samples/sec: 1657.90 - lr: 0.000046 - momentum: 0.000000
|
365 |
+
2023-10-25 02:50:19,491 epoch 2 - iter 1296/1445 - loss 0.10797866 - time (sec): 94.30 - samples/sec: 1664.21 - lr: 0.000045 - momentum: 0.000000
|
366 |
+
2023-10-25 02:50:30,412 epoch 2 - iter 1440/1445 - loss 0.10647364 - time (sec): 105.22 - samples/sec: 1669.24 - lr: 0.000044 - momentum: 0.000000
|
367 |
+
2023-10-25 02:50:30,787 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-25 02:50:30,787 EPOCH 2 done: loss 0.1066 - lr: 0.000044
|
369 |
+
2023-10-25 02:50:34,509 DEV : loss 0.11031629890203476 - f1-score (micro avg) 0.7728
|
370 |
+
2023-10-25 02:50:34,521 saving best model
|
371 |
+
2023-10-25 02:50:35,113 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-25 02:50:45,558 epoch 3 - iter 144/1445 - loss 0.07409640 - time (sec): 10.44 - samples/sec: 1639.70 - lr: 0.000044 - momentum: 0.000000
|
373 |
+
2023-10-25 02:50:56,017 epoch 3 - iter 288/1445 - loss 0.07630135 - time (sec): 20.90 - samples/sec: 1654.39 - lr: 0.000043 - momentum: 0.000000
|
374 |
+
2023-10-25 02:51:07,031 epoch 3 - iter 432/1445 - loss 0.08021788 - time (sec): 31.92 - samples/sec: 1679.11 - lr: 0.000043 - momentum: 0.000000
|
375 |
+
2023-10-25 02:51:17,656 epoch 3 - iter 576/1445 - loss 0.07837193 - time (sec): 42.54 - samples/sec: 1682.70 - lr: 0.000042 - momentum: 0.000000
|
376 |
+
2023-10-25 02:51:28,235 epoch 3 - iter 720/1445 - loss 0.07656273 - time (sec): 53.12 - samples/sec: 1688.18 - lr: 0.000042 - momentum: 0.000000
|
377 |
+
2023-10-25 02:51:38,586 epoch 3 - iter 864/1445 - loss 0.07895927 - time (sec): 63.47 - samples/sec: 1678.32 - lr: 0.000041 - momentum: 0.000000
|
378 |
+
2023-10-25 02:51:48,847 epoch 3 - iter 1008/1445 - loss 0.08436579 - time (sec): 73.73 - samples/sec: 1672.24 - lr: 0.000041 - momentum: 0.000000
|
379 |
+
2023-10-25 02:51:59,241 epoch 3 - iter 1152/1445 - loss 0.09116929 - time (sec): 84.13 - samples/sec: 1671.53 - lr: 0.000040 - momentum: 0.000000
|
380 |
+
2023-10-25 02:52:09,636 epoch 3 - iter 1296/1445 - loss 0.09128422 - time (sec): 94.52 - samples/sec: 1669.67 - lr: 0.000039 - momentum: 0.000000
|
381 |
+
2023-10-25 02:52:20,362 epoch 3 - iter 1440/1445 - loss 0.08962111 - time (sec): 105.25 - samples/sec: 1667.25 - lr: 0.000039 - momentum: 0.000000
|
382 |
+
2023-10-25 02:52:20,775 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-25 02:52:20,775 EPOCH 3 done: loss 0.0894 - lr: 0.000039
|
384 |
+
2023-10-25 02:52:24,214 DEV : loss 0.11695380508899689 - f1-score (micro avg) 0.8041
|
385 |
+
2023-10-25 02:52:24,226 saving best model
|
386 |
+
2023-10-25 02:52:24,813 ----------------------------------------------------------------------------------------------------
|
387 |
+
2023-10-25 02:52:35,169 epoch 4 - iter 144/1445 - loss 0.03918180 - time (sec): 10.36 - samples/sec: 1624.10 - lr: 0.000038 - momentum: 0.000000
|
388 |
+
2023-10-25 02:52:45,714 epoch 4 - iter 288/1445 - loss 0.04881504 - time (sec): 20.90 - samples/sec: 1665.17 - lr: 0.000038 - momentum: 0.000000
|
389 |
+
2023-10-25 02:52:56,634 epoch 4 - iter 432/1445 - loss 0.05723016 - time (sec): 31.82 - samples/sec: 1675.80 - lr: 0.000037 - momentum: 0.000000
|
390 |
+
2023-10-25 02:53:07,551 epoch 4 - iter 576/1445 - loss 0.05964875 - time (sec): 42.74 - samples/sec: 1662.42 - lr: 0.000037 - momentum: 0.000000
|
391 |
+
2023-10-25 02:53:18,165 epoch 4 - iter 720/1445 - loss 0.06496166 - time (sec): 53.35 - samples/sec: 1663.62 - lr: 0.000036 - momentum: 0.000000
|
392 |
+
2023-10-25 02:53:28,417 epoch 4 - iter 864/1445 - loss 0.06350446 - time (sec): 63.60 - samples/sec: 1657.23 - lr: 0.000036 - momentum: 0.000000
|
393 |
+
2023-10-25 02:53:39,264 epoch 4 - iter 1008/1445 - loss 0.06051938 - time (sec): 74.45 - samples/sec: 1668.13 - lr: 0.000035 - momentum: 0.000000
|
394 |
+
2023-10-25 02:53:49,798 epoch 4 - iter 1152/1445 - loss 0.05887437 - time (sec): 84.98 - samples/sec: 1664.26 - lr: 0.000034 - momentum: 0.000000
|
395 |
+
2023-10-25 02:53:59,973 epoch 4 - iter 1296/1445 - loss 0.05970754 - time (sec): 95.16 - samples/sec: 1658.41 - lr: 0.000034 - momentum: 0.000000
|
396 |
+
2023-10-25 02:54:10,424 epoch 4 - iter 1440/1445 - loss 0.06161537 - time (sec): 105.61 - samples/sec: 1665.35 - lr: 0.000033 - momentum: 0.000000
|
397 |
+
2023-10-25 02:54:10,740 ----------------------------------------------------------------------------------------------------
|
398 |
+
2023-10-25 02:54:10,741 EPOCH 4 done: loss 0.0615 - lr: 0.000033
|
399 |
+
2023-10-25 02:54:14,480 DEV : loss 0.13216571509838104 - f1-score (micro avg) 0.8015
|
400 |
+
2023-10-25 02:54:14,492 ----------------------------------------------------------------------------------------------------
|
401 |
+
2023-10-25 02:54:24,879 epoch 5 - iter 144/1445 - loss 0.06199165 - time (sec): 10.39 - samples/sec: 1705.07 - lr: 0.000033 - momentum: 0.000000
|
402 |
+
2023-10-25 02:54:35,549 epoch 5 - iter 288/1445 - loss 0.05502521 - time (sec): 21.06 - samples/sec: 1682.58 - lr: 0.000032 - momentum: 0.000000
|
403 |
+
2023-10-25 02:54:45,983 epoch 5 - iter 432/1445 - loss 0.04870086 - time (sec): 31.49 - samples/sec: 1677.67 - lr: 0.000032 - momentum: 0.000000
|
404 |
+
2023-10-25 02:54:56,195 epoch 5 - iter 576/1445 - loss 0.04642585 - time (sec): 41.70 - samples/sec: 1658.92 - lr: 0.000031 - momentum: 0.000000
|
405 |
+
2023-10-25 02:55:06,571 epoch 5 - iter 720/1445 - loss 0.04392696 - time (sec): 52.08 - samples/sec: 1655.67 - lr: 0.000031 - momentum: 0.000000
|
406 |
+
2023-10-25 02:55:17,601 epoch 5 - iter 864/1445 - loss 0.04447623 - time (sec): 63.11 - samples/sec: 1657.97 - lr: 0.000030 - momentum: 0.000000
|
407 |
+
2023-10-25 02:55:27,945 epoch 5 - iter 1008/1445 - loss 0.04459240 - time (sec): 73.45 - samples/sec: 1653.81 - lr: 0.000029 - momentum: 0.000000
|
408 |
+
2023-10-25 02:55:38,678 epoch 5 - iter 1152/1445 - loss 0.04961076 - time (sec): 84.18 - samples/sec: 1658.29 - lr: 0.000029 - momentum: 0.000000
|
409 |
+
2023-10-25 02:55:49,606 epoch 5 - iter 1296/1445 - loss 0.04875402 - time (sec): 95.11 - samples/sec: 1664.22 - lr: 0.000028 - momentum: 0.000000
|
410 |
+
2023-10-25 02:56:00,149 epoch 5 - iter 1440/1445 - loss 0.04823764 - time (sec): 105.66 - samples/sec: 1663.89 - lr: 0.000028 - momentum: 0.000000
|
411 |
+
2023-10-25 02:56:00,456 ----------------------------------------------------------------------------------------------------
|
412 |
+
2023-10-25 02:56:00,456 EPOCH 5 done: loss 0.0481 - lr: 0.000028
|
413 |
+
2023-10-25 02:56:03,895 DEV : loss 0.17967477440834045 - f1-score (micro avg) 0.7802
|
414 |
+
2023-10-25 02:56:03,907 ----------------------------------------------------------------------------------------------------
|
415 |
+
2023-10-25 02:56:14,551 epoch 6 - iter 144/1445 - loss 0.03163337 - time (sec): 10.64 - samples/sec: 1693.03 - lr: 0.000027 - momentum: 0.000000
|
416 |
+
2023-10-25 02:56:24,608 epoch 6 - iter 288/1445 - loss 0.03147930 - time (sec): 20.70 - samples/sec: 1646.79 - lr: 0.000027 - momentum: 0.000000
|
417 |
+
2023-10-25 02:56:35,463 epoch 6 - iter 432/1445 - loss 0.03580689 - time (sec): 31.56 - samples/sec: 1649.58 - lr: 0.000026 - momentum: 0.000000
|
418 |
+
2023-10-25 02:56:46,549 epoch 6 - iter 576/1445 - loss 0.03627773 - time (sec): 42.64 - samples/sec: 1670.01 - lr: 0.000026 - momentum: 0.000000
|
419 |
+
2023-10-25 02:56:57,225 epoch 6 - iter 720/1445 - loss 0.03566348 - time (sec): 53.32 - samples/sec: 1669.72 - lr: 0.000025 - momentum: 0.000000
|
420 |
+
2023-10-25 02:57:07,988 epoch 6 - iter 864/1445 - loss 0.03475012 - time (sec): 64.08 - samples/sec: 1668.18 - lr: 0.000024 - momentum: 0.000000
|
421 |
+
2023-10-25 02:57:18,683 epoch 6 - iter 1008/1445 - loss 0.03482640 - time (sec): 74.78 - samples/sec: 1666.19 - lr: 0.000024 - momentum: 0.000000
|
422 |
+
2023-10-25 02:57:29,048 epoch 6 - iter 1152/1445 - loss 0.03505707 - time (sec): 85.14 - samples/sec: 1665.92 - lr: 0.000023 - momentum: 0.000000
|
423 |
+
2023-10-25 02:57:39,148 epoch 6 - iter 1296/1445 - loss 0.03463365 - time (sec): 95.24 - samples/sec: 1662.76 - lr: 0.000023 - momentum: 0.000000
|
424 |
+
2023-10-25 02:57:49,762 epoch 6 - iter 1440/1445 - loss 0.03384896 - time (sec): 105.85 - samples/sec: 1660.33 - lr: 0.000022 - momentum: 0.000000
|
425 |
+
2023-10-25 02:57:50,108 ----------------------------------------------------------------------------------------------------
|
426 |
+
2023-10-25 02:57:50,109 EPOCH 6 done: loss 0.0340 - lr: 0.000022
|
427 |
+
2023-10-25 02:57:53,734 DEV : loss 0.19392693042755127 - f1-score (micro avg) 0.7865
|
428 |
+
2023-10-25 02:57:53,746 ----------------------------------------------------------------------------------------------------
|
429 |
+
2023-10-25 02:58:04,444 epoch 7 - iter 144/1445 - loss 0.02104653 - time (sec): 10.70 - samples/sec: 1703.89 - lr: 0.000022 - momentum: 0.000000
|
430 |
+
2023-10-25 02:58:15,335 epoch 7 - iter 288/1445 - loss 0.02262133 - time (sec): 21.59 - samples/sec: 1693.04 - lr: 0.000021 - momentum: 0.000000
|
431 |
+
2023-10-25 02:58:25,695 epoch 7 - iter 432/1445 - loss 0.02260463 - time (sec): 31.95 - samples/sec: 1671.25 - lr: 0.000021 - momentum: 0.000000
|
432 |
+
2023-10-25 02:58:36,269 epoch 7 - iter 576/1445 - loss 0.02285538 - time (sec): 42.52 - samples/sec: 1671.62 - lr: 0.000020 - momentum: 0.000000
|
433 |
+
2023-10-25 02:58:46,882 epoch 7 - iter 720/1445 - loss 0.02395447 - time (sec): 53.14 - samples/sec: 1666.26 - lr: 0.000019 - momentum: 0.000000
|
434 |
+
2023-10-25 02:58:57,348 epoch 7 - iter 864/1445 - loss 0.02356108 - time (sec): 63.60 - samples/sec: 1666.38 - lr: 0.000019 - momentum: 0.000000
|
435 |
+
2023-10-25 02:59:08,001 epoch 7 - iter 1008/1445 - loss 0.02380507 - time (sec): 74.25 - samples/sec: 1657.93 - lr: 0.000018 - momentum: 0.000000
|
436 |
+
2023-10-25 02:59:18,803 epoch 7 - iter 1152/1445 - loss 0.02353631 - time (sec): 85.06 - samples/sec: 1664.56 - lr: 0.000018 - momentum: 0.000000
|
437 |
+
2023-10-25 02:59:29,267 epoch 7 - iter 1296/1445 - loss 0.02194398 - time (sec): 95.52 - samples/sec: 1663.25 - lr: 0.000017 - momentum: 0.000000
|
438 |
+
2023-10-25 02:59:39,492 epoch 7 - iter 1440/1445 - loss 0.02210131 - time (sec): 105.75 - samples/sec: 1659.64 - lr: 0.000017 - momentum: 0.000000
|
439 |
+
2023-10-25 02:59:39,930 ----------------------------------------------------------------------------------------------------
|
440 |
+
2023-10-25 02:59:39,931 EPOCH 7 done: loss 0.0220 - lr: 0.000017
|
441 |
+
2023-10-25 02:59:43,674 DEV : loss 0.23535600304603577 - f1-score (micro avg) 0.7756
|
442 |
+
2023-10-25 02:59:43,687 ----------------------------------------------------------------------------------------------------
|
443 |
+
2023-10-25 02:59:53,987 epoch 8 - iter 144/1445 - loss 0.03149949 - time (sec): 10.30 - samples/sec: 1642.87 - lr: 0.000016 - momentum: 0.000000
|
444 |
+
2023-10-25 03:00:04,253 epoch 8 - iter 288/1445 - loss 0.02071536 - time (sec): 20.57 - samples/sec: 1650.08 - lr: 0.000016 - momentum: 0.000000
|
445 |
+
2023-10-25 03:00:14,564 epoch 8 - iter 432/1445 - loss 0.01773973 - time (sec): 30.88 - samples/sec: 1634.62 - lr: 0.000015 - momentum: 0.000000
|
446 |
+
2023-10-25 03:00:25,173 epoch 8 - iter 576/1445 - loss 0.01610270 - time (sec): 41.49 - samples/sec: 1626.91 - lr: 0.000014 - momentum: 0.000000
|
447 |
+
2023-10-25 03:00:35,755 epoch 8 - iter 720/1445 - loss 0.01622486 - time (sec): 52.07 - samples/sec: 1630.60 - lr: 0.000014 - momentum: 0.000000
|
448 |
+
2023-10-25 03:00:46,361 epoch 8 - iter 864/1445 - loss 0.01676869 - time (sec): 62.67 - samples/sec: 1637.19 - lr: 0.000013 - momentum: 0.000000
|
449 |
+
2023-10-25 03:00:57,090 epoch 8 - iter 1008/1445 - loss 0.01710768 - time (sec): 73.40 - samples/sec: 1634.69 - lr: 0.000013 - momentum: 0.000000
|
450 |
+
2023-10-25 03:01:07,556 epoch 8 - iter 1152/1445 - loss 0.01752298 - time (sec): 83.87 - samples/sec: 1640.12 - lr: 0.000012 - momentum: 0.000000
|
451 |
+
2023-10-25 03:01:18,207 epoch 8 - iter 1296/1445 - loss 0.01776129 - time (sec): 94.52 - samples/sec: 1653.16 - lr: 0.000012 - momentum: 0.000000
|
452 |
+
2023-10-25 03:01:29,416 epoch 8 - iter 1440/1445 - loss 0.01686894 - time (sec): 105.73 - samples/sec: 1661.17 - lr: 0.000011 - momentum: 0.000000
|
453 |
+
2023-10-25 03:01:29,739 ----------------------------------------------------------------------------------------------------
|
454 |
+
2023-10-25 03:01:29,739 EPOCH 8 done: loss 0.0169 - lr: 0.000011
|
455 |
+
2023-10-25 03:01:33,176 DEV : loss 0.18213523924350739 - f1-score (micro avg) 0.8075
|
456 |
+
2023-10-25 03:01:33,188 saving best model
|
457 |
+
2023-10-25 03:01:33,784 ----------------------------------------------------------------------------------------------------
|
458 |
+
2023-10-25 03:01:44,818 epoch 9 - iter 144/1445 - loss 0.00928022 - time (sec): 11.03 - samples/sec: 1645.09 - lr: 0.000011 - momentum: 0.000000
|
459 |
+
2023-10-25 03:01:55,751 epoch 9 - iter 288/1445 - loss 0.00982455 - time (sec): 21.97 - samples/sec: 1642.30 - lr: 0.000010 - momentum: 0.000000
|
460 |
+
2023-10-25 03:02:06,431 epoch 9 - iter 432/1445 - loss 0.00960726 - time (sec): 32.65 - samples/sec: 1673.59 - lr: 0.000009 - momentum: 0.000000
|
461 |
+
2023-10-25 03:02:16,942 epoch 9 - iter 576/1445 - loss 0.01120061 - time (sec): 43.16 - samples/sec: 1678.01 - lr: 0.000009 - momentum: 0.000000
|
462 |
+
2023-10-25 03:02:27,098 epoch 9 - iter 720/1445 - loss 0.01132071 - time (sec): 53.31 - samples/sec: 1666.57 - lr: 0.000008 - momentum: 0.000000
|
463 |
+
2023-10-25 03:02:37,414 epoch 9 - iter 864/1445 - loss 0.01068480 - time (sec): 63.63 - samples/sec: 1655.90 - lr: 0.000008 - momentum: 0.000000
|
464 |
+
2023-10-25 03:02:48,001 epoch 9 - iter 1008/1445 - loss 0.01040525 - time (sec): 74.22 - samples/sec: 1664.80 - lr: 0.000007 - momentum: 0.000000
|
465 |
+
2023-10-25 03:02:58,532 epoch 9 - iter 1152/1445 - loss 0.01019932 - time (sec): 84.75 - samples/sec: 1665.27 - lr: 0.000007 - momentum: 0.000000
|
466 |
+
2023-10-25 03:03:09,258 epoch 9 - iter 1296/1445 - loss 0.01091489 - time (sec): 95.47 - samples/sec: 1663.60 - lr: 0.000006 - momentum: 0.000000
|
467 |
+
2023-10-25 03:03:19,627 epoch 9 - iter 1440/1445 - loss 0.01075625 - time (sec): 105.84 - samples/sec: 1660.69 - lr: 0.000006 - momentum: 0.000000
|
468 |
+
2023-10-25 03:03:19,963 ----------------------------------------------------------------------------------------------------
|
469 |
+
2023-10-25 03:03:19,963 EPOCH 9 done: loss 0.0107 - lr: 0.000006
|
470 |
+
2023-10-25 03:03:23,388 DEV : loss 0.170689657330513 - f1-score (micro avg) 0.8228
|
471 |
+
2023-10-25 03:03:23,400 saving best model
|
472 |
+
2023-10-25 03:03:23,962 ----------------------------------------------------------------------------------------------------
|
473 |
+
2023-10-25 03:03:34,646 epoch 10 - iter 144/1445 - loss 0.00334886 - time (sec): 10.68 - samples/sec: 1665.67 - lr: 0.000005 - momentum: 0.000000
|
474 |
+
2023-10-25 03:03:45,380 epoch 10 - iter 288/1445 - loss 0.00315989 - time (sec): 21.42 - samples/sec: 1672.04 - lr: 0.000004 - momentum: 0.000000
|
475 |
+
2023-10-25 03:03:55,756 epoch 10 - iter 432/1445 - loss 0.00562550 - time (sec): 31.79 - samples/sec: 1651.83 - lr: 0.000004 - momentum: 0.000000
|
476 |
+
2023-10-25 03:04:06,159 epoch 10 - iter 576/1445 - loss 0.00612415 - time (sec): 42.20 - samples/sec: 1646.36 - lr: 0.000003 - momentum: 0.000000
|
477 |
+
2023-10-25 03:04:16,580 epoch 10 - iter 720/1445 - loss 0.00595122 - time (sec): 52.62 - samples/sec: 1645.55 - lr: 0.000003 - momentum: 0.000000
|
478 |
+
2023-10-25 03:04:26,978 epoch 10 - iter 864/1445 - loss 0.00564152 - time (sec): 63.02 - samples/sec: 1654.45 - lr: 0.000002 - momentum: 0.000000
|
479 |
+
2023-10-25 03:04:37,572 epoch 10 - iter 1008/1445 - loss 0.00580851 - time (sec): 73.61 - samples/sec: 1649.51 - lr: 0.000002 - momentum: 0.000000
|
480 |
+
2023-10-25 03:04:48,061 epoch 10 - iter 1152/1445 - loss 0.00639612 - time (sec): 84.10 - samples/sec: 1643.68 - lr: 0.000001 - momentum: 0.000000
|
481 |
+
2023-10-25 03:04:58,876 epoch 10 - iter 1296/1445 - loss 0.00636865 - time (sec): 94.91 - samples/sec: 1649.65 - lr: 0.000001 - momentum: 0.000000
|
482 |
+
2023-10-25 03:05:09,697 epoch 10 - iter 1440/1445 - loss 0.00635474 - time (sec): 105.73 - samples/sec: 1660.15 - lr: 0.000000 - momentum: 0.000000
|
483 |
+
2023-10-25 03:05:10,044 ----------------------------------------------------------------------------------------------------
|
484 |
+
2023-10-25 03:05:10,044 EPOCH 10 done: loss 0.0065 - lr: 0.000000
|
485 |
+
2023-10-25 03:05:13,783 DEV : loss 0.2022934854030609 - f1-score (micro avg) 0.8098
|
486 |
+
2023-10-25 03:05:14,262 ----------------------------------------------------------------------------------------------------
|
487 |
+
2023-10-25 03:05:14,263 Loading model from best epoch ...
|
488 |
+
2023-10-25 03:05:15,995 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG
|
489 |
+
2023-10-25 03:05:19,560
|
490 |
+
Results:
|
491 |
+
- F-score (micro) 0.8085
|
492 |
+
- F-score (macro) 0.7092
|
493 |
+
- Accuracy 0.6905
|
494 |
+
|
495 |
+
By class:
|
496 |
+
precision recall f1-score support
|
497 |
+
|
498 |
+
PER 0.8294 0.7967 0.8127 482
|
499 |
+
LOC 0.8900 0.8122 0.8493 458
|
500 |
+
ORG 0.5745 0.3913 0.4655 69
|
501 |
+
|
502 |
+
micro avg 0.8438 0.7760 0.8085 1009
|
503 |
+
macro avg 0.7646 0.6667 0.7092 1009
|
504 |
+
weighted avg 0.8394 0.7760 0.8056 1009
|
505 |
+
|
506 |
+
2023-10-25 03:05:19,560 ----------------------------------------------------------------------------------------------------
|