stefan-it commited on
Commit
845cf65
·
1 Parent(s): 22cdc18

Upload ./training.log with huggingface_hub

Browse files
Files changed (1) hide show
  1. training.log +506 -0
training.log ADDED
@@ -0,0 +1,506 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-10-25 02:46:56,140 ----------------------------------------------------------------------------------------------------
2
+ 2023-10-25 02:46:56,141 Model: "SequenceTagger(
3
+ (embeddings): TransformerWordEmbeddings(
4
+ (model): BertModel(
5
+ (embeddings): BertEmbeddings(
6
+ (word_embeddings): Embedding(64001, 768)
7
+ (position_embeddings): Embedding(512, 768)
8
+ (token_type_embeddings): Embedding(2, 768)
9
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
10
+ (dropout): Dropout(p=0.1, inplace=False)
11
+ )
12
+ (encoder): BertEncoder(
13
+ (layer): ModuleList(
14
+ (0): BertLayer(
15
+ (attention): BertAttention(
16
+ (self): BertSelfAttention(
17
+ (query): Linear(in_features=768, out_features=768, bias=True)
18
+ (key): Linear(in_features=768, out_features=768, bias=True)
19
+ (value): Linear(in_features=768, out_features=768, bias=True)
20
+ (dropout): Dropout(p=0.1, inplace=False)
21
+ )
22
+ (output): BertSelfOutput(
23
+ (dense): Linear(in_features=768, out_features=768, bias=True)
24
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
25
+ (dropout): Dropout(p=0.1, inplace=False)
26
+ )
27
+ )
28
+ (intermediate): BertIntermediate(
29
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
30
+ (intermediate_act_fn): GELUActivation()
31
+ )
32
+ (output): BertOutput(
33
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
34
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
35
+ (dropout): Dropout(p=0.1, inplace=False)
36
+ )
37
+ )
38
+ (1): BertLayer(
39
+ (attention): BertAttention(
40
+ (self): BertSelfAttention(
41
+ (query): Linear(in_features=768, out_features=768, bias=True)
42
+ (key): Linear(in_features=768, out_features=768, bias=True)
43
+ (value): Linear(in_features=768, out_features=768, bias=True)
44
+ (dropout): Dropout(p=0.1, inplace=False)
45
+ )
46
+ (output): BertSelfOutput(
47
+ (dense): Linear(in_features=768, out_features=768, bias=True)
48
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
49
+ (dropout): Dropout(p=0.1, inplace=False)
50
+ )
51
+ )
52
+ (intermediate): BertIntermediate(
53
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
54
+ (intermediate_act_fn): GELUActivation()
55
+ )
56
+ (output): BertOutput(
57
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
58
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
59
+ (dropout): Dropout(p=0.1, inplace=False)
60
+ )
61
+ )
62
+ (2): BertLayer(
63
+ (attention): BertAttention(
64
+ (self): BertSelfAttention(
65
+ (query): Linear(in_features=768, out_features=768, bias=True)
66
+ (key): Linear(in_features=768, out_features=768, bias=True)
67
+ (value): Linear(in_features=768, out_features=768, bias=True)
68
+ (dropout): Dropout(p=0.1, inplace=False)
69
+ )
70
+ (output): BertSelfOutput(
71
+ (dense): Linear(in_features=768, out_features=768, bias=True)
72
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
73
+ (dropout): Dropout(p=0.1, inplace=False)
74
+ )
75
+ )
76
+ (intermediate): BertIntermediate(
77
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
78
+ (intermediate_act_fn): GELUActivation()
79
+ )
80
+ (output): BertOutput(
81
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
82
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
83
+ (dropout): Dropout(p=0.1, inplace=False)
84
+ )
85
+ )
86
+ (3): BertLayer(
87
+ (attention): BertAttention(
88
+ (self): BertSelfAttention(
89
+ (query): Linear(in_features=768, out_features=768, bias=True)
90
+ (key): Linear(in_features=768, out_features=768, bias=True)
91
+ (value): Linear(in_features=768, out_features=768, bias=True)
92
+ (dropout): Dropout(p=0.1, inplace=False)
93
+ )
94
+ (output): BertSelfOutput(
95
+ (dense): Linear(in_features=768, out_features=768, bias=True)
96
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
97
+ (dropout): Dropout(p=0.1, inplace=False)
98
+ )
99
+ )
100
+ (intermediate): BertIntermediate(
101
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
102
+ (intermediate_act_fn): GELUActivation()
103
+ )
104
+ (output): BertOutput(
105
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
106
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
107
+ (dropout): Dropout(p=0.1, inplace=False)
108
+ )
109
+ )
110
+ (4): BertLayer(
111
+ (attention): BertAttention(
112
+ (self): BertSelfAttention(
113
+ (query): Linear(in_features=768, out_features=768, bias=True)
114
+ (key): Linear(in_features=768, out_features=768, bias=True)
115
+ (value): Linear(in_features=768, out_features=768, bias=True)
116
+ (dropout): Dropout(p=0.1, inplace=False)
117
+ )
118
+ (output): BertSelfOutput(
119
+ (dense): Linear(in_features=768, out_features=768, bias=True)
120
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
121
+ (dropout): Dropout(p=0.1, inplace=False)
122
+ )
123
+ )
124
+ (intermediate): BertIntermediate(
125
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
126
+ (intermediate_act_fn): GELUActivation()
127
+ )
128
+ (output): BertOutput(
129
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
130
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
131
+ (dropout): Dropout(p=0.1, inplace=False)
132
+ )
133
+ )
134
+ (5): BertLayer(
135
+ (attention): BertAttention(
136
+ (self): BertSelfAttention(
137
+ (query): Linear(in_features=768, out_features=768, bias=True)
138
+ (key): Linear(in_features=768, out_features=768, bias=True)
139
+ (value): Linear(in_features=768, out_features=768, bias=True)
140
+ (dropout): Dropout(p=0.1, inplace=False)
141
+ )
142
+ (output): BertSelfOutput(
143
+ (dense): Linear(in_features=768, out_features=768, bias=True)
144
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
145
+ (dropout): Dropout(p=0.1, inplace=False)
146
+ )
147
+ )
148
+ (intermediate): BertIntermediate(
149
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
150
+ (intermediate_act_fn): GELUActivation()
151
+ )
152
+ (output): BertOutput(
153
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
154
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
155
+ (dropout): Dropout(p=0.1, inplace=False)
156
+ )
157
+ )
158
+ (6): BertLayer(
159
+ (attention): BertAttention(
160
+ (self): BertSelfAttention(
161
+ (query): Linear(in_features=768, out_features=768, bias=True)
162
+ (key): Linear(in_features=768, out_features=768, bias=True)
163
+ (value): Linear(in_features=768, out_features=768, bias=True)
164
+ (dropout): Dropout(p=0.1, inplace=False)
165
+ )
166
+ (output): BertSelfOutput(
167
+ (dense): Linear(in_features=768, out_features=768, bias=True)
168
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
169
+ (dropout): Dropout(p=0.1, inplace=False)
170
+ )
171
+ )
172
+ (intermediate): BertIntermediate(
173
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
174
+ (intermediate_act_fn): GELUActivation()
175
+ )
176
+ (output): BertOutput(
177
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
178
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
179
+ (dropout): Dropout(p=0.1, inplace=False)
180
+ )
181
+ )
182
+ (7): BertLayer(
183
+ (attention): BertAttention(
184
+ (self): BertSelfAttention(
185
+ (query): Linear(in_features=768, out_features=768, bias=True)
186
+ (key): Linear(in_features=768, out_features=768, bias=True)
187
+ (value): Linear(in_features=768, out_features=768, bias=True)
188
+ (dropout): Dropout(p=0.1, inplace=False)
189
+ )
190
+ (output): BertSelfOutput(
191
+ (dense): Linear(in_features=768, out_features=768, bias=True)
192
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
193
+ (dropout): Dropout(p=0.1, inplace=False)
194
+ )
195
+ )
196
+ (intermediate): BertIntermediate(
197
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
198
+ (intermediate_act_fn): GELUActivation()
199
+ )
200
+ (output): BertOutput(
201
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
202
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
203
+ (dropout): Dropout(p=0.1, inplace=False)
204
+ )
205
+ )
206
+ (8): BertLayer(
207
+ (attention): BertAttention(
208
+ (self): BertSelfAttention(
209
+ (query): Linear(in_features=768, out_features=768, bias=True)
210
+ (key): Linear(in_features=768, out_features=768, bias=True)
211
+ (value): Linear(in_features=768, out_features=768, bias=True)
212
+ (dropout): Dropout(p=0.1, inplace=False)
213
+ )
214
+ (output): BertSelfOutput(
215
+ (dense): Linear(in_features=768, out_features=768, bias=True)
216
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
217
+ (dropout): Dropout(p=0.1, inplace=False)
218
+ )
219
+ )
220
+ (intermediate): BertIntermediate(
221
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
222
+ (intermediate_act_fn): GELUActivation()
223
+ )
224
+ (output): BertOutput(
225
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
226
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
227
+ (dropout): Dropout(p=0.1, inplace=False)
228
+ )
229
+ )
230
+ (9): BertLayer(
231
+ (attention): BertAttention(
232
+ (self): BertSelfAttention(
233
+ (query): Linear(in_features=768, out_features=768, bias=True)
234
+ (key): Linear(in_features=768, out_features=768, bias=True)
235
+ (value): Linear(in_features=768, out_features=768, bias=True)
236
+ (dropout): Dropout(p=0.1, inplace=False)
237
+ )
238
+ (output): BertSelfOutput(
239
+ (dense): Linear(in_features=768, out_features=768, bias=True)
240
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
241
+ (dropout): Dropout(p=0.1, inplace=False)
242
+ )
243
+ )
244
+ (intermediate): BertIntermediate(
245
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
246
+ (intermediate_act_fn): GELUActivation()
247
+ )
248
+ (output): BertOutput(
249
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
250
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
251
+ (dropout): Dropout(p=0.1, inplace=False)
252
+ )
253
+ )
254
+ (10): BertLayer(
255
+ (attention): BertAttention(
256
+ (self): BertSelfAttention(
257
+ (query): Linear(in_features=768, out_features=768, bias=True)
258
+ (key): Linear(in_features=768, out_features=768, bias=True)
259
+ (value): Linear(in_features=768, out_features=768, bias=True)
260
+ (dropout): Dropout(p=0.1, inplace=False)
261
+ )
262
+ (output): BertSelfOutput(
263
+ (dense): Linear(in_features=768, out_features=768, bias=True)
264
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
265
+ (dropout): Dropout(p=0.1, inplace=False)
266
+ )
267
+ )
268
+ (intermediate): BertIntermediate(
269
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
270
+ (intermediate_act_fn): GELUActivation()
271
+ )
272
+ (output): BertOutput(
273
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
274
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
275
+ (dropout): Dropout(p=0.1, inplace=False)
276
+ )
277
+ )
278
+ (11): BertLayer(
279
+ (attention): BertAttention(
280
+ (self): BertSelfAttention(
281
+ (query): Linear(in_features=768, out_features=768, bias=True)
282
+ (key): Linear(in_features=768, out_features=768, bias=True)
283
+ (value): Linear(in_features=768, out_features=768, bias=True)
284
+ (dropout): Dropout(p=0.1, inplace=False)
285
+ )
286
+ (output): BertSelfOutput(
287
+ (dense): Linear(in_features=768, out_features=768, bias=True)
288
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
289
+ (dropout): Dropout(p=0.1, inplace=False)
290
+ )
291
+ )
292
+ (intermediate): BertIntermediate(
293
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
294
+ (intermediate_act_fn): GELUActivation()
295
+ )
296
+ (output): BertOutput(
297
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
298
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
299
+ (dropout): Dropout(p=0.1, inplace=False)
300
+ )
301
+ )
302
+ )
303
+ )
304
+ (pooler): BertPooler(
305
+ (dense): Linear(in_features=768, out_features=768, bias=True)
306
+ (activation): Tanh()
307
+ )
308
+ )
309
+ )
310
+ (locked_dropout): LockedDropout(p=0.5)
311
+ (linear): Linear(in_features=768, out_features=13, bias=True)
312
+ (loss_function): CrossEntropyLoss()
313
+ )"
314
+ 2023-10-25 02:46:56,141 ----------------------------------------------------------------------------------------------------
315
+ 2023-10-25 02:46:56,141 MultiCorpus: 5777 train + 722 dev + 723 test sentences
316
+ - NER_ICDAR_EUROPEANA Corpus: 5777 train + 722 dev + 723 test sentences - /home/ubuntu/.flair/datasets/ner_icdar_europeana/nl
317
+ 2023-10-25 02:46:56,141 ----------------------------------------------------------------------------------------------------
318
+ 2023-10-25 02:46:56,141 Train: 5777 sentences
319
+ 2023-10-25 02:46:56,141 (train_with_dev=False, train_with_test=False)
320
+ 2023-10-25 02:46:56,141 ----------------------------------------------------------------------------------------------------
321
+ 2023-10-25 02:46:56,141 Training Params:
322
+ 2023-10-25 02:46:56,141 - learning_rate: "5e-05"
323
+ 2023-10-25 02:46:56,141 - mini_batch_size: "4"
324
+ 2023-10-25 02:46:56,141 - max_epochs: "10"
325
+ 2023-10-25 02:46:56,141 - shuffle: "True"
326
+ 2023-10-25 02:46:56,141 ----------------------------------------------------------------------------------------------------
327
+ 2023-10-25 02:46:56,141 Plugins:
328
+ 2023-10-25 02:46:56,141 - TensorboardLogger
329
+ 2023-10-25 02:46:56,141 - LinearScheduler | warmup_fraction: '0.1'
330
+ 2023-10-25 02:46:56,141 ----------------------------------------------------------------------------------------------------
331
+ 2023-10-25 02:46:56,141 Final evaluation on model from best epoch (best-model.pt)
332
+ 2023-10-25 02:46:56,141 - metric: "('micro avg', 'f1-score')"
333
+ 2023-10-25 02:46:56,141 ----------------------------------------------------------------------------------------------------
334
+ 2023-10-25 02:46:56,141 Computation:
335
+ 2023-10-25 02:46:56,141 - compute on device: cuda:0
336
+ 2023-10-25 02:46:56,141 - embedding storage: none
337
+ 2023-10-25 02:46:56,141 ----------------------------------------------------------------------------------------------------
338
+ 2023-10-25 02:46:56,142 Model training base path: "hmbench-icdar/nl-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
339
+ 2023-10-25 02:46:56,142 ----------------------------------------------------------------------------------------------------
340
+ 2023-10-25 02:46:56,142 ----------------------------------------------------------------------------------------------------
341
+ 2023-10-25 02:46:56,142 Logging anything other than scalars to TensorBoard is currently not supported.
342
+ 2023-10-25 02:47:06,559 epoch 1 - iter 144/1445 - loss 1.41992500 - time (sec): 10.42 - samples/sec: 1608.70 - lr: 0.000005 - momentum: 0.000000
343
+ 2023-10-25 02:47:16,662 epoch 1 - iter 288/1445 - loss 0.83750215 - time (sec): 20.52 - samples/sec: 1606.10 - lr: 0.000010 - momentum: 0.000000
344
+ 2023-10-25 02:47:26,992 epoch 1 - iter 432/1445 - loss 0.61481097 - time (sec): 30.85 - samples/sec: 1627.37 - lr: 0.000015 - momentum: 0.000000
345
+ 2023-10-25 02:47:37,751 epoch 1 - iter 576/1445 - loss 0.49739072 - time (sec): 41.61 - samples/sec: 1645.66 - lr: 0.000020 - momentum: 0.000000
346
+ 2023-10-25 02:47:47,972 epoch 1 - iter 720/1445 - loss 0.43005049 - time (sec): 51.83 - samples/sec: 1642.73 - lr: 0.000025 - momentum: 0.000000
347
+ 2023-10-25 02:47:58,593 epoch 1 - iter 864/1445 - loss 0.37973109 - time (sec): 62.45 - samples/sec: 1661.45 - lr: 0.000030 - momentum: 0.000000
348
+ 2023-10-25 02:48:09,290 epoch 1 - iter 1008/1445 - loss 0.34700059 - time (sec): 73.15 - samples/sec: 1663.30 - lr: 0.000035 - momentum: 0.000000
349
+ 2023-10-25 02:48:19,641 epoch 1 - iter 1152/1445 - loss 0.32342178 - time (sec): 83.50 - samples/sec: 1663.16 - lr: 0.000040 - momentum: 0.000000
350
+ 2023-10-25 02:48:30,241 epoch 1 - iter 1296/1445 - loss 0.30192614 - time (sec): 94.10 - samples/sec: 1673.20 - lr: 0.000045 - momentum: 0.000000
351
+ 2023-10-25 02:48:41,018 epoch 1 - iter 1440/1445 - loss 0.28526748 - time (sec): 104.88 - samples/sec: 1674.11 - lr: 0.000050 - momentum: 0.000000
352
+ 2023-10-25 02:48:41,391 ----------------------------------------------------------------------------------------------------
353
+ 2023-10-25 02:48:41,391 EPOCH 1 done: loss 0.2846 - lr: 0.000050
354
+ 2023-10-25 02:48:44,710 DEV : loss 0.1542755663394928 - f1-score (micro avg) 0.6051
355
+ 2023-10-25 02:48:44,722 saving best model
356
+ 2023-10-25 02:48:45,190 ----------------------------------------------------------------------------------------------------
357
+ 2023-10-25 02:48:55,635 epoch 2 - iter 144/1445 - loss 0.13673856 - time (sec): 10.44 - samples/sec: 1638.04 - lr: 0.000049 - momentum: 0.000000
358
+ 2023-10-25 02:49:05,928 epoch 2 - iter 288/1445 - loss 0.12547644 - time (sec): 20.74 - samples/sec: 1655.38 - lr: 0.000049 - momentum: 0.000000
359
+ 2023-10-25 02:49:16,263 epoch 2 - iter 432/1445 - loss 0.12065053 - time (sec): 31.07 - samples/sec: 1663.96 - lr: 0.000048 - momentum: 0.000000
360
+ 2023-10-25 02:49:26,771 epoch 2 - iter 576/1445 - loss 0.11765343 - time (sec): 41.58 - samples/sec: 1664.67 - lr: 0.000048 - momentum: 0.000000
361
+ 2023-10-25 02:49:37,344 epoch 2 - iter 720/1445 - loss 0.11380688 - time (sec): 52.15 - samples/sec: 1658.88 - lr: 0.000047 - momentum: 0.000000
362
+ 2023-10-25 02:49:47,754 epoch 2 - iter 864/1445 - loss 0.10924427 - time (sec): 62.56 - samples/sec: 1659.33 - lr: 0.000047 - momentum: 0.000000
363
+ 2023-10-25 02:49:58,240 epoch 2 - iter 1008/1445 - loss 0.10937149 - time (sec): 73.05 - samples/sec: 1657.31 - lr: 0.000046 - momentum: 0.000000
364
+ 2023-10-25 02:50:08,713 epoch 2 - iter 1152/1445 - loss 0.10758530 - time (sec): 83.52 - samples/sec: 1657.90 - lr: 0.000046 - momentum: 0.000000
365
+ 2023-10-25 02:50:19,491 epoch 2 - iter 1296/1445 - loss 0.10797866 - time (sec): 94.30 - samples/sec: 1664.21 - lr: 0.000045 - momentum: 0.000000
366
+ 2023-10-25 02:50:30,412 epoch 2 - iter 1440/1445 - loss 0.10647364 - time (sec): 105.22 - samples/sec: 1669.24 - lr: 0.000044 - momentum: 0.000000
367
+ 2023-10-25 02:50:30,787 ----------------------------------------------------------------------------------------------------
368
+ 2023-10-25 02:50:30,787 EPOCH 2 done: loss 0.1066 - lr: 0.000044
369
+ 2023-10-25 02:50:34,509 DEV : loss 0.11031629890203476 - f1-score (micro avg) 0.7728
370
+ 2023-10-25 02:50:34,521 saving best model
371
+ 2023-10-25 02:50:35,113 ----------------------------------------------------------------------------------------------------
372
+ 2023-10-25 02:50:45,558 epoch 3 - iter 144/1445 - loss 0.07409640 - time (sec): 10.44 - samples/sec: 1639.70 - lr: 0.000044 - momentum: 0.000000
373
+ 2023-10-25 02:50:56,017 epoch 3 - iter 288/1445 - loss 0.07630135 - time (sec): 20.90 - samples/sec: 1654.39 - lr: 0.000043 - momentum: 0.000000
374
+ 2023-10-25 02:51:07,031 epoch 3 - iter 432/1445 - loss 0.08021788 - time (sec): 31.92 - samples/sec: 1679.11 - lr: 0.000043 - momentum: 0.000000
375
+ 2023-10-25 02:51:17,656 epoch 3 - iter 576/1445 - loss 0.07837193 - time (sec): 42.54 - samples/sec: 1682.70 - lr: 0.000042 - momentum: 0.000000
376
+ 2023-10-25 02:51:28,235 epoch 3 - iter 720/1445 - loss 0.07656273 - time (sec): 53.12 - samples/sec: 1688.18 - lr: 0.000042 - momentum: 0.000000
377
+ 2023-10-25 02:51:38,586 epoch 3 - iter 864/1445 - loss 0.07895927 - time (sec): 63.47 - samples/sec: 1678.32 - lr: 0.000041 - momentum: 0.000000
378
+ 2023-10-25 02:51:48,847 epoch 3 - iter 1008/1445 - loss 0.08436579 - time (sec): 73.73 - samples/sec: 1672.24 - lr: 0.000041 - momentum: 0.000000
379
+ 2023-10-25 02:51:59,241 epoch 3 - iter 1152/1445 - loss 0.09116929 - time (sec): 84.13 - samples/sec: 1671.53 - lr: 0.000040 - momentum: 0.000000
380
+ 2023-10-25 02:52:09,636 epoch 3 - iter 1296/1445 - loss 0.09128422 - time (sec): 94.52 - samples/sec: 1669.67 - lr: 0.000039 - momentum: 0.000000
381
+ 2023-10-25 02:52:20,362 epoch 3 - iter 1440/1445 - loss 0.08962111 - time (sec): 105.25 - samples/sec: 1667.25 - lr: 0.000039 - momentum: 0.000000
382
+ 2023-10-25 02:52:20,775 ----------------------------------------------------------------------------------------------------
383
+ 2023-10-25 02:52:20,775 EPOCH 3 done: loss 0.0894 - lr: 0.000039
384
+ 2023-10-25 02:52:24,214 DEV : loss 0.11695380508899689 - f1-score (micro avg) 0.8041
385
+ 2023-10-25 02:52:24,226 saving best model
386
+ 2023-10-25 02:52:24,813 ----------------------------------------------------------------------------------------------------
387
+ 2023-10-25 02:52:35,169 epoch 4 - iter 144/1445 - loss 0.03918180 - time (sec): 10.36 - samples/sec: 1624.10 - lr: 0.000038 - momentum: 0.000000
388
+ 2023-10-25 02:52:45,714 epoch 4 - iter 288/1445 - loss 0.04881504 - time (sec): 20.90 - samples/sec: 1665.17 - lr: 0.000038 - momentum: 0.000000
389
+ 2023-10-25 02:52:56,634 epoch 4 - iter 432/1445 - loss 0.05723016 - time (sec): 31.82 - samples/sec: 1675.80 - lr: 0.000037 - momentum: 0.000000
390
+ 2023-10-25 02:53:07,551 epoch 4 - iter 576/1445 - loss 0.05964875 - time (sec): 42.74 - samples/sec: 1662.42 - lr: 0.000037 - momentum: 0.000000
391
+ 2023-10-25 02:53:18,165 epoch 4 - iter 720/1445 - loss 0.06496166 - time (sec): 53.35 - samples/sec: 1663.62 - lr: 0.000036 - momentum: 0.000000
392
+ 2023-10-25 02:53:28,417 epoch 4 - iter 864/1445 - loss 0.06350446 - time (sec): 63.60 - samples/sec: 1657.23 - lr: 0.000036 - momentum: 0.000000
393
+ 2023-10-25 02:53:39,264 epoch 4 - iter 1008/1445 - loss 0.06051938 - time (sec): 74.45 - samples/sec: 1668.13 - lr: 0.000035 - momentum: 0.000000
394
+ 2023-10-25 02:53:49,798 epoch 4 - iter 1152/1445 - loss 0.05887437 - time (sec): 84.98 - samples/sec: 1664.26 - lr: 0.000034 - momentum: 0.000000
395
+ 2023-10-25 02:53:59,973 epoch 4 - iter 1296/1445 - loss 0.05970754 - time (sec): 95.16 - samples/sec: 1658.41 - lr: 0.000034 - momentum: 0.000000
396
+ 2023-10-25 02:54:10,424 epoch 4 - iter 1440/1445 - loss 0.06161537 - time (sec): 105.61 - samples/sec: 1665.35 - lr: 0.000033 - momentum: 0.000000
397
+ 2023-10-25 02:54:10,740 ----------------------------------------------------------------------------------------------------
398
+ 2023-10-25 02:54:10,741 EPOCH 4 done: loss 0.0615 - lr: 0.000033
399
+ 2023-10-25 02:54:14,480 DEV : loss 0.13216571509838104 - f1-score (micro avg) 0.8015
400
+ 2023-10-25 02:54:14,492 ----------------------------------------------------------------------------------------------------
401
+ 2023-10-25 02:54:24,879 epoch 5 - iter 144/1445 - loss 0.06199165 - time (sec): 10.39 - samples/sec: 1705.07 - lr: 0.000033 - momentum: 0.000000
402
+ 2023-10-25 02:54:35,549 epoch 5 - iter 288/1445 - loss 0.05502521 - time (sec): 21.06 - samples/sec: 1682.58 - lr: 0.000032 - momentum: 0.000000
403
+ 2023-10-25 02:54:45,983 epoch 5 - iter 432/1445 - loss 0.04870086 - time (sec): 31.49 - samples/sec: 1677.67 - lr: 0.000032 - momentum: 0.000000
404
+ 2023-10-25 02:54:56,195 epoch 5 - iter 576/1445 - loss 0.04642585 - time (sec): 41.70 - samples/sec: 1658.92 - lr: 0.000031 - momentum: 0.000000
405
+ 2023-10-25 02:55:06,571 epoch 5 - iter 720/1445 - loss 0.04392696 - time (sec): 52.08 - samples/sec: 1655.67 - lr: 0.000031 - momentum: 0.000000
406
+ 2023-10-25 02:55:17,601 epoch 5 - iter 864/1445 - loss 0.04447623 - time (sec): 63.11 - samples/sec: 1657.97 - lr: 0.000030 - momentum: 0.000000
407
+ 2023-10-25 02:55:27,945 epoch 5 - iter 1008/1445 - loss 0.04459240 - time (sec): 73.45 - samples/sec: 1653.81 - lr: 0.000029 - momentum: 0.000000
408
+ 2023-10-25 02:55:38,678 epoch 5 - iter 1152/1445 - loss 0.04961076 - time (sec): 84.18 - samples/sec: 1658.29 - lr: 0.000029 - momentum: 0.000000
409
+ 2023-10-25 02:55:49,606 epoch 5 - iter 1296/1445 - loss 0.04875402 - time (sec): 95.11 - samples/sec: 1664.22 - lr: 0.000028 - momentum: 0.000000
410
+ 2023-10-25 02:56:00,149 epoch 5 - iter 1440/1445 - loss 0.04823764 - time (sec): 105.66 - samples/sec: 1663.89 - lr: 0.000028 - momentum: 0.000000
411
+ 2023-10-25 02:56:00,456 ----------------------------------------------------------------------------------------------------
412
+ 2023-10-25 02:56:00,456 EPOCH 5 done: loss 0.0481 - lr: 0.000028
413
+ 2023-10-25 02:56:03,895 DEV : loss 0.17967477440834045 - f1-score (micro avg) 0.7802
414
+ 2023-10-25 02:56:03,907 ----------------------------------------------------------------------------------------------------
415
+ 2023-10-25 02:56:14,551 epoch 6 - iter 144/1445 - loss 0.03163337 - time (sec): 10.64 - samples/sec: 1693.03 - lr: 0.000027 - momentum: 0.000000
416
+ 2023-10-25 02:56:24,608 epoch 6 - iter 288/1445 - loss 0.03147930 - time (sec): 20.70 - samples/sec: 1646.79 - lr: 0.000027 - momentum: 0.000000
417
+ 2023-10-25 02:56:35,463 epoch 6 - iter 432/1445 - loss 0.03580689 - time (sec): 31.56 - samples/sec: 1649.58 - lr: 0.000026 - momentum: 0.000000
418
+ 2023-10-25 02:56:46,549 epoch 6 - iter 576/1445 - loss 0.03627773 - time (sec): 42.64 - samples/sec: 1670.01 - lr: 0.000026 - momentum: 0.000000
419
+ 2023-10-25 02:56:57,225 epoch 6 - iter 720/1445 - loss 0.03566348 - time (sec): 53.32 - samples/sec: 1669.72 - lr: 0.000025 - momentum: 0.000000
420
+ 2023-10-25 02:57:07,988 epoch 6 - iter 864/1445 - loss 0.03475012 - time (sec): 64.08 - samples/sec: 1668.18 - lr: 0.000024 - momentum: 0.000000
421
+ 2023-10-25 02:57:18,683 epoch 6 - iter 1008/1445 - loss 0.03482640 - time (sec): 74.78 - samples/sec: 1666.19 - lr: 0.000024 - momentum: 0.000000
422
+ 2023-10-25 02:57:29,048 epoch 6 - iter 1152/1445 - loss 0.03505707 - time (sec): 85.14 - samples/sec: 1665.92 - lr: 0.000023 - momentum: 0.000000
423
+ 2023-10-25 02:57:39,148 epoch 6 - iter 1296/1445 - loss 0.03463365 - time (sec): 95.24 - samples/sec: 1662.76 - lr: 0.000023 - momentum: 0.000000
424
+ 2023-10-25 02:57:49,762 epoch 6 - iter 1440/1445 - loss 0.03384896 - time (sec): 105.85 - samples/sec: 1660.33 - lr: 0.000022 - momentum: 0.000000
425
+ 2023-10-25 02:57:50,108 ----------------------------------------------------------------------------------------------------
426
+ 2023-10-25 02:57:50,109 EPOCH 6 done: loss 0.0340 - lr: 0.000022
427
+ 2023-10-25 02:57:53,734 DEV : loss 0.19392693042755127 - f1-score (micro avg) 0.7865
428
+ 2023-10-25 02:57:53,746 ----------------------------------------------------------------------------------------------------
429
+ 2023-10-25 02:58:04,444 epoch 7 - iter 144/1445 - loss 0.02104653 - time (sec): 10.70 - samples/sec: 1703.89 - lr: 0.000022 - momentum: 0.000000
430
+ 2023-10-25 02:58:15,335 epoch 7 - iter 288/1445 - loss 0.02262133 - time (sec): 21.59 - samples/sec: 1693.04 - lr: 0.000021 - momentum: 0.000000
431
+ 2023-10-25 02:58:25,695 epoch 7 - iter 432/1445 - loss 0.02260463 - time (sec): 31.95 - samples/sec: 1671.25 - lr: 0.000021 - momentum: 0.000000
432
+ 2023-10-25 02:58:36,269 epoch 7 - iter 576/1445 - loss 0.02285538 - time (sec): 42.52 - samples/sec: 1671.62 - lr: 0.000020 - momentum: 0.000000
433
+ 2023-10-25 02:58:46,882 epoch 7 - iter 720/1445 - loss 0.02395447 - time (sec): 53.14 - samples/sec: 1666.26 - lr: 0.000019 - momentum: 0.000000
434
+ 2023-10-25 02:58:57,348 epoch 7 - iter 864/1445 - loss 0.02356108 - time (sec): 63.60 - samples/sec: 1666.38 - lr: 0.000019 - momentum: 0.000000
435
+ 2023-10-25 02:59:08,001 epoch 7 - iter 1008/1445 - loss 0.02380507 - time (sec): 74.25 - samples/sec: 1657.93 - lr: 0.000018 - momentum: 0.000000
436
+ 2023-10-25 02:59:18,803 epoch 7 - iter 1152/1445 - loss 0.02353631 - time (sec): 85.06 - samples/sec: 1664.56 - lr: 0.000018 - momentum: 0.000000
437
+ 2023-10-25 02:59:29,267 epoch 7 - iter 1296/1445 - loss 0.02194398 - time (sec): 95.52 - samples/sec: 1663.25 - lr: 0.000017 - momentum: 0.000000
438
+ 2023-10-25 02:59:39,492 epoch 7 - iter 1440/1445 - loss 0.02210131 - time (sec): 105.75 - samples/sec: 1659.64 - lr: 0.000017 - momentum: 0.000000
439
+ 2023-10-25 02:59:39,930 ----------------------------------------------------------------------------------------------------
440
+ 2023-10-25 02:59:39,931 EPOCH 7 done: loss 0.0220 - lr: 0.000017
441
+ 2023-10-25 02:59:43,674 DEV : loss 0.23535600304603577 - f1-score (micro avg) 0.7756
442
+ 2023-10-25 02:59:43,687 ----------------------------------------------------------------------------------------------------
443
+ 2023-10-25 02:59:53,987 epoch 8 - iter 144/1445 - loss 0.03149949 - time (sec): 10.30 - samples/sec: 1642.87 - lr: 0.000016 - momentum: 0.000000
444
+ 2023-10-25 03:00:04,253 epoch 8 - iter 288/1445 - loss 0.02071536 - time (sec): 20.57 - samples/sec: 1650.08 - lr: 0.000016 - momentum: 0.000000
445
+ 2023-10-25 03:00:14,564 epoch 8 - iter 432/1445 - loss 0.01773973 - time (sec): 30.88 - samples/sec: 1634.62 - lr: 0.000015 - momentum: 0.000000
446
+ 2023-10-25 03:00:25,173 epoch 8 - iter 576/1445 - loss 0.01610270 - time (sec): 41.49 - samples/sec: 1626.91 - lr: 0.000014 - momentum: 0.000000
447
+ 2023-10-25 03:00:35,755 epoch 8 - iter 720/1445 - loss 0.01622486 - time (sec): 52.07 - samples/sec: 1630.60 - lr: 0.000014 - momentum: 0.000000
448
+ 2023-10-25 03:00:46,361 epoch 8 - iter 864/1445 - loss 0.01676869 - time (sec): 62.67 - samples/sec: 1637.19 - lr: 0.000013 - momentum: 0.000000
449
+ 2023-10-25 03:00:57,090 epoch 8 - iter 1008/1445 - loss 0.01710768 - time (sec): 73.40 - samples/sec: 1634.69 - lr: 0.000013 - momentum: 0.000000
450
+ 2023-10-25 03:01:07,556 epoch 8 - iter 1152/1445 - loss 0.01752298 - time (sec): 83.87 - samples/sec: 1640.12 - lr: 0.000012 - momentum: 0.000000
451
+ 2023-10-25 03:01:18,207 epoch 8 - iter 1296/1445 - loss 0.01776129 - time (sec): 94.52 - samples/sec: 1653.16 - lr: 0.000012 - momentum: 0.000000
452
+ 2023-10-25 03:01:29,416 epoch 8 - iter 1440/1445 - loss 0.01686894 - time (sec): 105.73 - samples/sec: 1661.17 - lr: 0.000011 - momentum: 0.000000
453
+ 2023-10-25 03:01:29,739 ----------------------------------------------------------------------------------------------------
454
+ 2023-10-25 03:01:29,739 EPOCH 8 done: loss 0.0169 - lr: 0.000011
455
+ 2023-10-25 03:01:33,176 DEV : loss 0.18213523924350739 - f1-score (micro avg) 0.8075
456
+ 2023-10-25 03:01:33,188 saving best model
457
+ 2023-10-25 03:01:33,784 ----------------------------------------------------------------------------------------------------
458
+ 2023-10-25 03:01:44,818 epoch 9 - iter 144/1445 - loss 0.00928022 - time (sec): 11.03 - samples/sec: 1645.09 - lr: 0.000011 - momentum: 0.000000
459
+ 2023-10-25 03:01:55,751 epoch 9 - iter 288/1445 - loss 0.00982455 - time (sec): 21.97 - samples/sec: 1642.30 - lr: 0.000010 - momentum: 0.000000
460
+ 2023-10-25 03:02:06,431 epoch 9 - iter 432/1445 - loss 0.00960726 - time (sec): 32.65 - samples/sec: 1673.59 - lr: 0.000009 - momentum: 0.000000
461
+ 2023-10-25 03:02:16,942 epoch 9 - iter 576/1445 - loss 0.01120061 - time (sec): 43.16 - samples/sec: 1678.01 - lr: 0.000009 - momentum: 0.000000
462
+ 2023-10-25 03:02:27,098 epoch 9 - iter 720/1445 - loss 0.01132071 - time (sec): 53.31 - samples/sec: 1666.57 - lr: 0.000008 - momentum: 0.000000
463
+ 2023-10-25 03:02:37,414 epoch 9 - iter 864/1445 - loss 0.01068480 - time (sec): 63.63 - samples/sec: 1655.90 - lr: 0.000008 - momentum: 0.000000
464
+ 2023-10-25 03:02:48,001 epoch 9 - iter 1008/1445 - loss 0.01040525 - time (sec): 74.22 - samples/sec: 1664.80 - lr: 0.000007 - momentum: 0.000000
465
+ 2023-10-25 03:02:58,532 epoch 9 - iter 1152/1445 - loss 0.01019932 - time (sec): 84.75 - samples/sec: 1665.27 - lr: 0.000007 - momentum: 0.000000
466
+ 2023-10-25 03:03:09,258 epoch 9 - iter 1296/1445 - loss 0.01091489 - time (sec): 95.47 - samples/sec: 1663.60 - lr: 0.000006 - momentum: 0.000000
467
+ 2023-10-25 03:03:19,627 epoch 9 - iter 1440/1445 - loss 0.01075625 - time (sec): 105.84 - samples/sec: 1660.69 - lr: 0.000006 - momentum: 0.000000
468
+ 2023-10-25 03:03:19,963 ----------------------------------------------------------------------------------------------------
469
+ 2023-10-25 03:03:19,963 EPOCH 9 done: loss 0.0107 - lr: 0.000006
470
+ 2023-10-25 03:03:23,388 DEV : loss 0.170689657330513 - f1-score (micro avg) 0.8228
471
+ 2023-10-25 03:03:23,400 saving best model
472
+ 2023-10-25 03:03:23,962 ----------------------------------------------------------------------------------------------------
473
+ 2023-10-25 03:03:34,646 epoch 10 - iter 144/1445 - loss 0.00334886 - time (sec): 10.68 - samples/sec: 1665.67 - lr: 0.000005 - momentum: 0.000000
474
+ 2023-10-25 03:03:45,380 epoch 10 - iter 288/1445 - loss 0.00315989 - time (sec): 21.42 - samples/sec: 1672.04 - lr: 0.000004 - momentum: 0.000000
475
+ 2023-10-25 03:03:55,756 epoch 10 - iter 432/1445 - loss 0.00562550 - time (sec): 31.79 - samples/sec: 1651.83 - lr: 0.000004 - momentum: 0.000000
476
+ 2023-10-25 03:04:06,159 epoch 10 - iter 576/1445 - loss 0.00612415 - time (sec): 42.20 - samples/sec: 1646.36 - lr: 0.000003 - momentum: 0.000000
477
+ 2023-10-25 03:04:16,580 epoch 10 - iter 720/1445 - loss 0.00595122 - time (sec): 52.62 - samples/sec: 1645.55 - lr: 0.000003 - momentum: 0.000000
478
+ 2023-10-25 03:04:26,978 epoch 10 - iter 864/1445 - loss 0.00564152 - time (sec): 63.02 - samples/sec: 1654.45 - lr: 0.000002 - momentum: 0.000000
479
+ 2023-10-25 03:04:37,572 epoch 10 - iter 1008/1445 - loss 0.00580851 - time (sec): 73.61 - samples/sec: 1649.51 - lr: 0.000002 - momentum: 0.000000
480
+ 2023-10-25 03:04:48,061 epoch 10 - iter 1152/1445 - loss 0.00639612 - time (sec): 84.10 - samples/sec: 1643.68 - lr: 0.000001 - momentum: 0.000000
481
+ 2023-10-25 03:04:58,876 epoch 10 - iter 1296/1445 - loss 0.00636865 - time (sec): 94.91 - samples/sec: 1649.65 - lr: 0.000001 - momentum: 0.000000
482
+ 2023-10-25 03:05:09,697 epoch 10 - iter 1440/1445 - loss 0.00635474 - time (sec): 105.73 - samples/sec: 1660.15 - lr: 0.000000 - momentum: 0.000000
483
+ 2023-10-25 03:05:10,044 ----------------------------------------------------------------------------------------------------
484
+ 2023-10-25 03:05:10,044 EPOCH 10 done: loss 0.0065 - lr: 0.000000
485
+ 2023-10-25 03:05:13,783 DEV : loss 0.2022934854030609 - f1-score (micro avg) 0.8098
486
+ 2023-10-25 03:05:14,262 ----------------------------------------------------------------------------------------------------
487
+ 2023-10-25 03:05:14,263 Loading model from best epoch ...
488
+ 2023-10-25 03:05:15,995 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG
489
+ 2023-10-25 03:05:19,560
490
+ Results:
491
+ - F-score (micro) 0.8085
492
+ - F-score (macro) 0.7092
493
+ - Accuracy 0.6905
494
+
495
+ By class:
496
+ precision recall f1-score support
497
+
498
+ PER 0.8294 0.7967 0.8127 482
499
+ LOC 0.8900 0.8122 0.8493 458
500
+ ORG 0.5745 0.3913 0.4655 69
501
+
502
+ micro avg 0.8438 0.7760 0.8085 1009
503
+ macro avg 0.7646 0.6667 0.7092 1009
504
+ weighted avg 0.8394 0.7760 0.8056 1009
505
+
506
+ 2023-10-25 03:05:19,560 ----------------------------------------------------------------------------------------------------