File size: 23,904 Bytes
f85bc34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
2023-10-17 11:50:59,878 ----------------------------------------------------------------------------------------------------
2023-10-17 11:50:59,879 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): ElectraModel(
      (embeddings): ElectraEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ElectraEncoder(
        (layer): ModuleList(
          (0-11): 12 x ElectraLayer(
            (attention): ElectraAttention(
              (self): ElectraSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ElectraSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ElectraIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ElectraOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=13, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-17 11:50:59,879 ----------------------------------------------------------------------------------------------------
2023-10-17 11:50:59,879 MultiCorpus: 7936 train + 992 dev + 992 test sentences
 - NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /root/.flair/datasets/ner_icdar_europeana/fr
2023-10-17 11:50:59,879 ----------------------------------------------------------------------------------------------------
2023-10-17 11:50:59,879 Train:  7936 sentences
2023-10-17 11:50:59,879         (train_with_dev=False, train_with_test=False)
2023-10-17 11:50:59,879 ----------------------------------------------------------------------------------------------------
2023-10-17 11:50:59,879 Training Params:
2023-10-17 11:50:59,879  - learning_rate: "5e-05" 
2023-10-17 11:50:59,879  - mini_batch_size: "4"
2023-10-17 11:50:59,879  - max_epochs: "10"
2023-10-17 11:50:59,879  - shuffle: "True"
2023-10-17 11:50:59,879 ----------------------------------------------------------------------------------------------------
2023-10-17 11:50:59,879 Plugins:
2023-10-17 11:50:59,879  - TensorboardLogger
2023-10-17 11:50:59,879  - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 11:50:59,879 ----------------------------------------------------------------------------------------------------
2023-10-17 11:50:59,879 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 11:50:59,879  - metric: "('micro avg', 'f1-score')"
2023-10-17 11:50:59,879 ----------------------------------------------------------------------------------------------------
2023-10-17 11:50:59,879 Computation:
2023-10-17 11:50:59,880  - compute on device: cuda:0
2023-10-17 11:50:59,880  - embedding storage: none
2023-10-17 11:50:59,880 ----------------------------------------------------------------------------------------------------
2023-10-17 11:50:59,880 Model training base path: "hmbench-icdar/fr-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-17 11:50:59,880 ----------------------------------------------------------------------------------------------------
2023-10-17 11:50:59,880 ----------------------------------------------------------------------------------------------------
2023-10-17 11:50:59,880 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 11:51:08,865 epoch 1 - iter 198/1984 - loss 1.99658672 - time (sec): 8.98 - samples/sec: 1773.62 - lr: 0.000005 - momentum: 0.000000
2023-10-17 11:51:17,977 epoch 1 - iter 396/1984 - loss 1.11484466 - time (sec): 18.10 - samples/sec: 1803.46 - lr: 0.000010 - momentum: 0.000000
2023-10-17 11:51:26,677 epoch 1 - iter 594/1984 - loss 0.82031286 - time (sec): 26.80 - samples/sec: 1822.19 - lr: 0.000015 - momentum: 0.000000
2023-10-17 11:51:35,306 epoch 1 - iter 792/1984 - loss 0.65663170 - time (sec): 35.42 - samples/sec: 1846.14 - lr: 0.000020 - momentum: 0.000000
2023-10-17 11:51:44,319 epoch 1 - iter 990/1984 - loss 0.55179417 - time (sec): 44.44 - samples/sec: 1861.84 - lr: 0.000025 - momentum: 0.000000
2023-10-17 11:51:53,348 epoch 1 - iter 1188/1984 - loss 0.49119338 - time (sec): 53.47 - samples/sec: 1852.30 - lr: 0.000030 - momentum: 0.000000
2023-10-17 11:52:02,343 epoch 1 - iter 1386/1984 - loss 0.44256195 - time (sec): 62.46 - samples/sec: 1858.68 - lr: 0.000035 - momentum: 0.000000
2023-10-17 11:52:11,442 epoch 1 - iter 1584/1984 - loss 0.40740944 - time (sec): 71.56 - samples/sec: 1839.94 - lr: 0.000040 - momentum: 0.000000
2023-10-17 11:52:20,490 epoch 1 - iter 1782/1984 - loss 0.37924328 - time (sec): 80.61 - samples/sec: 1831.13 - lr: 0.000045 - momentum: 0.000000
2023-10-17 11:52:29,468 epoch 1 - iter 1980/1984 - loss 0.35390636 - time (sec): 89.59 - samples/sec: 1827.85 - lr: 0.000050 - momentum: 0.000000
2023-10-17 11:52:29,645 ----------------------------------------------------------------------------------------------------
2023-10-17 11:52:29,645 EPOCH 1 done: loss 0.3535 - lr: 0.000050
2023-10-17 11:52:32,795 DEV : loss 0.11604664474725723 - f1-score (micro avg)  0.7365
2023-10-17 11:52:32,816 saving best model
2023-10-17 11:52:33,192 ----------------------------------------------------------------------------------------------------
2023-10-17 11:52:42,328 epoch 2 - iter 198/1984 - loss 0.14192747 - time (sec): 9.13 - samples/sec: 1705.31 - lr: 0.000049 - momentum: 0.000000
2023-10-17 11:52:51,310 epoch 2 - iter 396/1984 - loss 0.12714871 - time (sec): 18.12 - samples/sec: 1747.11 - lr: 0.000049 - momentum: 0.000000
2023-10-17 11:53:00,111 epoch 2 - iter 594/1984 - loss 0.12855381 - time (sec): 26.92 - samples/sec: 1792.02 - lr: 0.000048 - momentum: 0.000000
2023-10-17 11:53:08,839 epoch 2 - iter 792/1984 - loss 0.12867843 - time (sec): 35.65 - samples/sec: 1811.84 - lr: 0.000048 - momentum: 0.000000
2023-10-17 11:53:17,959 epoch 2 - iter 990/1984 - loss 0.12838419 - time (sec): 44.77 - samples/sec: 1825.07 - lr: 0.000047 - momentum: 0.000000
2023-10-17 11:53:26,874 epoch 2 - iter 1188/1984 - loss 0.12740182 - time (sec): 53.68 - samples/sec: 1822.71 - lr: 0.000047 - momentum: 0.000000
2023-10-17 11:53:35,927 epoch 2 - iter 1386/1984 - loss 0.12351792 - time (sec): 62.73 - samples/sec: 1822.16 - lr: 0.000046 - momentum: 0.000000
2023-10-17 11:53:44,983 epoch 2 - iter 1584/1984 - loss 0.12218031 - time (sec): 71.79 - samples/sec: 1830.55 - lr: 0.000046 - momentum: 0.000000
2023-10-17 11:53:54,028 epoch 2 - iter 1782/1984 - loss 0.12157226 - time (sec): 80.83 - samples/sec: 1829.60 - lr: 0.000045 - momentum: 0.000000
2023-10-17 11:54:03,013 epoch 2 - iter 1980/1984 - loss 0.12534668 - time (sec): 89.82 - samples/sec: 1822.84 - lr: 0.000044 - momentum: 0.000000
2023-10-17 11:54:03,190 ----------------------------------------------------------------------------------------------------
2023-10-17 11:54:03,190 EPOCH 2 done: loss 0.1253 - lr: 0.000044
2023-10-17 11:54:06,991 DEV : loss 0.09573990851640701 - f1-score (micro avg)  0.7572
2023-10-17 11:54:07,012 saving best model
2023-10-17 11:54:07,504 ----------------------------------------------------------------------------------------------------
2023-10-17 11:54:16,693 epoch 3 - iter 198/1984 - loss 0.09494312 - time (sec): 9.19 - samples/sec: 1831.31 - lr: 0.000044 - momentum: 0.000000
2023-10-17 11:54:25,610 epoch 3 - iter 396/1984 - loss 0.09329297 - time (sec): 18.10 - samples/sec: 1821.18 - lr: 0.000043 - momentum: 0.000000
2023-10-17 11:54:34,690 epoch 3 - iter 594/1984 - loss 0.09450932 - time (sec): 27.18 - samples/sec: 1832.48 - lr: 0.000043 - momentum: 0.000000
2023-10-17 11:54:43,567 epoch 3 - iter 792/1984 - loss 0.09880612 - time (sec): 36.06 - samples/sec: 1796.09 - lr: 0.000042 - momentum: 0.000000
2023-10-17 11:54:52,286 epoch 3 - iter 990/1984 - loss 0.09577827 - time (sec): 44.78 - samples/sec: 1815.05 - lr: 0.000042 - momentum: 0.000000
2023-10-17 11:55:00,816 epoch 3 - iter 1188/1984 - loss 0.09551043 - time (sec): 53.31 - samples/sec: 1829.07 - lr: 0.000041 - momentum: 0.000000
2023-10-17 11:55:09,757 epoch 3 - iter 1386/1984 - loss 0.09500722 - time (sec): 62.25 - samples/sec: 1852.97 - lr: 0.000041 - momentum: 0.000000
2023-10-17 11:55:18,875 epoch 3 - iter 1584/1984 - loss 0.09605364 - time (sec): 71.37 - samples/sec: 1848.06 - lr: 0.000040 - momentum: 0.000000
2023-10-17 11:55:27,832 epoch 3 - iter 1782/1984 - loss 0.09581236 - time (sec): 80.32 - samples/sec: 1834.01 - lr: 0.000039 - momentum: 0.000000
2023-10-17 11:55:36,807 epoch 3 - iter 1980/1984 - loss 0.09610021 - time (sec): 89.30 - samples/sec: 1832.73 - lr: 0.000039 - momentum: 0.000000
2023-10-17 11:55:36,985 ----------------------------------------------------------------------------------------------------
2023-10-17 11:55:36,986 EPOCH 3 done: loss 0.0960 - lr: 0.000039
2023-10-17 11:55:40,348 DEV : loss 0.12434609979391098 - f1-score (micro avg)  0.7354
2023-10-17 11:55:40,368 ----------------------------------------------------------------------------------------------------
2023-10-17 11:55:49,368 epoch 4 - iter 198/1984 - loss 0.05981882 - time (sec): 9.00 - samples/sec: 1857.83 - lr: 0.000038 - momentum: 0.000000
2023-10-17 11:55:58,236 epoch 4 - iter 396/1984 - loss 0.06629030 - time (sec): 17.87 - samples/sec: 1808.21 - lr: 0.000038 - momentum: 0.000000
2023-10-17 11:56:07,217 epoch 4 - iter 594/1984 - loss 0.07164876 - time (sec): 26.85 - samples/sec: 1770.52 - lr: 0.000037 - momentum: 0.000000
2023-10-17 11:56:16,630 epoch 4 - iter 792/1984 - loss 0.07351127 - time (sec): 36.26 - samples/sec: 1781.58 - lr: 0.000037 - momentum: 0.000000
2023-10-17 11:56:25,747 epoch 4 - iter 990/1984 - loss 0.07151819 - time (sec): 45.38 - samples/sec: 1786.64 - lr: 0.000036 - momentum: 0.000000
2023-10-17 11:56:34,907 epoch 4 - iter 1188/1984 - loss 0.07095217 - time (sec): 54.54 - samples/sec: 1778.05 - lr: 0.000036 - momentum: 0.000000
2023-10-17 11:56:43,989 epoch 4 - iter 1386/1984 - loss 0.07050035 - time (sec): 63.62 - samples/sec: 1786.16 - lr: 0.000035 - momentum: 0.000000
2023-10-17 11:56:53,161 epoch 4 - iter 1584/1984 - loss 0.07691480 - time (sec): 72.79 - samples/sec: 1792.55 - lr: 0.000034 - momentum: 0.000000
2023-10-17 11:57:02,381 epoch 4 - iter 1782/1984 - loss 0.07542490 - time (sec): 82.01 - samples/sec: 1799.04 - lr: 0.000034 - momentum: 0.000000
2023-10-17 11:57:11,654 epoch 4 - iter 1980/1984 - loss 0.07641851 - time (sec): 91.28 - samples/sec: 1793.27 - lr: 0.000033 - momentum: 0.000000
2023-10-17 11:57:11,837 ----------------------------------------------------------------------------------------------------
2023-10-17 11:57:11,837 EPOCH 4 done: loss 0.0763 - lr: 0.000033
2023-10-17 11:57:15,244 DEV : loss 0.18466949462890625 - f1-score (micro avg)  0.7408
2023-10-17 11:57:15,266 ----------------------------------------------------------------------------------------------------
2023-10-17 11:57:24,362 epoch 5 - iter 198/1984 - loss 0.04859297 - time (sec): 9.10 - samples/sec: 1863.76 - lr: 0.000033 - momentum: 0.000000
2023-10-17 11:57:33,455 epoch 5 - iter 396/1984 - loss 0.04635554 - time (sec): 18.19 - samples/sec: 1835.22 - lr: 0.000032 - momentum: 0.000000
2023-10-17 11:57:42,513 epoch 5 - iter 594/1984 - loss 0.04871548 - time (sec): 27.25 - samples/sec: 1821.40 - lr: 0.000032 - momentum: 0.000000
2023-10-17 11:57:51,623 epoch 5 - iter 792/1984 - loss 0.05252835 - time (sec): 36.36 - samples/sec: 1805.94 - lr: 0.000031 - momentum: 0.000000
2023-10-17 11:58:00,844 epoch 5 - iter 990/1984 - loss 0.05388850 - time (sec): 45.58 - samples/sec: 1792.29 - lr: 0.000031 - momentum: 0.000000
2023-10-17 11:58:09,855 epoch 5 - iter 1188/1984 - loss 0.05515150 - time (sec): 54.59 - samples/sec: 1778.02 - lr: 0.000030 - momentum: 0.000000
2023-10-17 11:58:19,340 epoch 5 - iter 1386/1984 - loss 0.05623579 - time (sec): 64.07 - samples/sec: 1779.81 - lr: 0.000029 - momentum: 0.000000
2023-10-17 11:58:28,807 epoch 5 - iter 1584/1984 - loss 0.05445857 - time (sec): 73.54 - samples/sec: 1779.22 - lr: 0.000029 - momentum: 0.000000
2023-10-17 11:58:37,858 epoch 5 - iter 1782/1984 - loss 0.05549020 - time (sec): 82.59 - samples/sec: 1778.92 - lr: 0.000028 - momentum: 0.000000
2023-10-17 11:58:46,900 epoch 5 - iter 1980/1984 - loss 0.05573079 - time (sec): 91.63 - samples/sec: 1786.04 - lr: 0.000028 - momentum: 0.000000
2023-10-17 11:58:47,077 ----------------------------------------------------------------------------------------------------
2023-10-17 11:58:47,077 EPOCH 5 done: loss 0.0556 - lr: 0.000028
2023-10-17 11:58:50,444 DEV : loss 0.1826779842376709 - f1-score (micro avg)  0.7561
2023-10-17 11:58:50,465 ----------------------------------------------------------------------------------------------------
2023-10-17 11:58:59,462 epoch 6 - iter 198/1984 - loss 0.03393163 - time (sec): 9.00 - samples/sec: 1795.87 - lr: 0.000027 - momentum: 0.000000
2023-10-17 11:59:08,616 epoch 6 - iter 396/1984 - loss 0.03547336 - time (sec): 18.15 - samples/sec: 1805.34 - lr: 0.000027 - momentum: 0.000000
2023-10-17 11:59:17,653 epoch 6 - iter 594/1984 - loss 0.03602657 - time (sec): 27.19 - samples/sec: 1787.83 - lr: 0.000026 - momentum: 0.000000
2023-10-17 11:59:26,822 epoch 6 - iter 792/1984 - loss 0.03952462 - time (sec): 36.35 - samples/sec: 1804.95 - lr: 0.000026 - momentum: 0.000000
2023-10-17 11:59:36,151 epoch 6 - iter 990/1984 - loss 0.03912622 - time (sec): 45.68 - samples/sec: 1810.09 - lr: 0.000025 - momentum: 0.000000
2023-10-17 11:59:45,232 epoch 6 - iter 1188/1984 - loss 0.03870866 - time (sec): 54.77 - samples/sec: 1813.32 - lr: 0.000024 - momentum: 0.000000
2023-10-17 11:59:53,643 epoch 6 - iter 1386/1984 - loss 0.04046966 - time (sec): 63.18 - samples/sec: 1815.61 - lr: 0.000024 - momentum: 0.000000
2023-10-17 12:00:02,231 epoch 6 - iter 1584/1984 - loss 0.03983182 - time (sec): 71.76 - samples/sec: 1827.05 - lr: 0.000023 - momentum: 0.000000
2023-10-17 12:00:10,739 epoch 6 - iter 1782/1984 - loss 0.03988919 - time (sec): 80.27 - samples/sec: 1834.23 - lr: 0.000023 - momentum: 0.000000
2023-10-17 12:00:19,695 epoch 6 - iter 1980/1984 - loss 0.04066461 - time (sec): 89.23 - samples/sec: 1834.70 - lr: 0.000022 - momentum: 0.000000
2023-10-17 12:00:19,885 ----------------------------------------------------------------------------------------------------
2023-10-17 12:00:19,885 EPOCH 6 done: loss 0.0406 - lr: 0.000022
2023-10-17 12:00:23,280 DEV : loss 0.1922488510608673 - f1-score (micro avg)  0.7417
2023-10-17 12:00:23,303 ----------------------------------------------------------------------------------------------------
2023-10-17 12:00:32,599 epoch 7 - iter 198/1984 - loss 0.03507544 - time (sec): 9.29 - samples/sec: 1779.65 - lr: 0.000022 - momentum: 0.000000
2023-10-17 12:00:41,907 epoch 7 - iter 396/1984 - loss 0.03033014 - time (sec): 18.60 - samples/sec: 1789.70 - lr: 0.000021 - momentum: 0.000000
2023-10-17 12:00:51,166 epoch 7 - iter 594/1984 - loss 0.02968150 - time (sec): 27.86 - samples/sec: 1802.14 - lr: 0.000021 - momentum: 0.000000
2023-10-17 12:01:00,212 epoch 7 - iter 792/1984 - loss 0.02789631 - time (sec): 36.91 - samples/sec: 1810.72 - lr: 0.000020 - momentum: 0.000000
2023-10-17 12:01:08,802 epoch 7 - iter 990/1984 - loss 0.02776484 - time (sec): 45.50 - samples/sec: 1838.23 - lr: 0.000019 - momentum: 0.000000
2023-10-17 12:01:17,842 epoch 7 - iter 1188/1984 - loss 0.02661241 - time (sec): 54.54 - samples/sec: 1822.87 - lr: 0.000019 - momentum: 0.000000
2023-10-17 12:01:26,856 epoch 7 - iter 1386/1984 - loss 0.02640200 - time (sec): 63.55 - samples/sec: 1809.99 - lr: 0.000018 - momentum: 0.000000
2023-10-17 12:01:35,967 epoch 7 - iter 1584/1984 - loss 0.02663353 - time (sec): 72.66 - samples/sec: 1806.05 - lr: 0.000018 - momentum: 0.000000
2023-10-17 12:01:44,950 epoch 7 - iter 1782/1984 - loss 0.02669130 - time (sec): 81.64 - samples/sec: 1798.68 - lr: 0.000017 - momentum: 0.000000
2023-10-17 12:01:54,310 epoch 7 - iter 1980/1984 - loss 0.02730554 - time (sec): 91.00 - samples/sec: 1798.73 - lr: 0.000017 - momentum: 0.000000
2023-10-17 12:01:54,485 ----------------------------------------------------------------------------------------------------
2023-10-17 12:01:54,485 EPOCH 7 done: loss 0.0273 - lr: 0.000017
2023-10-17 12:01:58,292 DEV : loss 0.18583810329437256 - f1-score (micro avg)  0.756
2023-10-17 12:01:58,313 ----------------------------------------------------------------------------------------------------
2023-10-17 12:02:07,377 epoch 8 - iter 198/1984 - loss 0.01962946 - time (sec): 9.06 - samples/sec: 1832.57 - lr: 0.000016 - momentum: 0.000000
2023-10-17 12:02:16,417 epoch 8 - iter 396/1984 - loss 0.02070604 - time (sec): 18.10 - samples/sec: 1860.49 - lr: 0.000016 - momentum: 0.000000
2023-10-17 12:02:25,338 epoch 8 - iter 594/1984 - loss 0.02069916 - time (sec): 27.02 - samples/sec: 1830.33 - lr: 0.000015 - momentum: 0.000000
2023-10-17 12:02:34,277 epoch 8 - iter 792/1984 - loss 0.02086583 - time (sec): 35.96 - samples/sec: 1822.60 - lr: 0.000014 - momentum: 0.000000
2023-10-17 12:02:43,312 epoch 8 - iter 990/1984 - loss 0.01924450 - time (sec): 45.00 - samples/sec: 1831.26 - lr: 0.000014 - momentum: 0.000000
2023-10-17 12:02:52,365 epoch 8 - iter 1188/1984 - loss 0.01949509 - time (sec): 54.05 - samples/sec: 1819.84 - lr: 0.000013 - momentum: 0.000000
2023-10-17 12:03:01,315 epoch 8 - iter 1386/1984 - loss 0.01960191 - time (sec): 63.00 - samples/sec: 1804.63 - lr: 0.000013 - momentum: 0.000000
2023-10-17 12:03:10,558 epoch 8 - iter 1584/1984 - loss 0.02035400 - time (sec): 72.24 - samples/sec: 1811.71 - lr: 0.000012 - momentum: 0.000000
2023-10-17 12:03:19,519 epoch 8 - iter 1782/1984 - loss 0.01981080 - time (sec): 81.20 - samples/sec: 1809.61 - lr: 0.000012 - momentum: 0.000000
2023-10-17 12:03:28,832 epoch 8 - iter 1980/1984 - loss 0.01959358 - time (sec): 90.52 - samples/sec: 1808.27 - lr: 0.000011 - momentum: 0.000000
2023-10-17 12:03:29,026 ----------------------------------------------------------------------------------------------------
2023-10-17 12:03:29,027 EPOCH 8 done: loss 0.0196 - lr: 0.000011
2023-10-17 12:03:32,455 DEV : loss 0.23994652926921844 - f1-score (micro avg)  0.7582
2023-10-17 12:03:32,476 saving best model
2023-10-17 12:03:32,872 ----------------------------------------------------------------------------------------------------
2023-10-17 12:03:42,075 epoch 9 - iter 198/1984 - loss 0.01369371 - time (sec): 9.20 - samples/sec: 1698.60 - lr: 0.000011 - momentum: 0.000000
2023-10-17 12:03:51,142 epoch 9 - iter 396/1984 - loss 0.01542831 - time (sec): 18.27 - samples/sec: 1744.84 - lr: 0.000010 - momentum: 0.000000
2023-10-17 12:04:00,413 epoch 9 - iter 594/1984 - loss 0.01701451 - time (sec): 27.54 - samples/sec: 1752.27 - lr: 0.000009 - momentum: 0.000000
2023-10-17 12:04:09,646 epoch 9 - iter 792/1984 - loss 0.01617942 - time (sec): 36.77 - samples/sec: 1769.71 - lr: 0.000009 - momentum: 0.000000
2023-10-17 12:04:18,868 epoch 9 - iter 990/1984 - loss 0.01513742 - time (sec): 45.99 - samples/sec: 1764.51 - lr: 0.000008 - momentum: 0.000000
2023-10-17 12:04:28,200 epoch 9 - iter 1188/1984 - loss 0.01474000 - time (sec): 55.33 - samples/sec: 1778.49 - lr: 0.000008 - momentum: 0.000000
2023-10-17 12:04:37,255 epoch 9 - iter 1386/1984 - loss 0.01453604 - time (sec): 64.38 - samples/sec: 1788.32 - lr: 0.000007 - momentum: 0.000000
2023-10-17 12:04:46,295 epoch 9 - iter 1584/1984 - loss 0.01380448 - time (sec): 73.42 - samples/sec: 1786.61 - lr: 0.000007 - momentum: 0.000000
2023-10-17 12:04:55,527 epoch 9 - iter 1782/1984 - loss 0.01369184 - time (sec): 82.65 - samples/sec: 1786.61 - lr: 0.000006 - momentum: 0.000000
2023-10-17 12:05:04,642 epoch 9 - iter 1980/1984 - loss 0.01333927 - time (sec): 91.77 - samples/sec: 1784.22 - lr: 0.000006 - momentum: 0.000000
2023-10-17 12:05:04,808 ----------------------------------------------------------------------------------------------------
2023-10-17 12:05:04,808 EPOCH 9 done: loss 0.0133 - lr: 0.000006
2023-10-17 12:05:08,300 DEV : loss 0.25141069293022156 - f1-score (micro avg)  0.7495
2023-10-17 12:05:08,331 ----------------------------------------------------------------------------------------------------
2023-10-17 12:05:19,095 epoch 10 - iter 198/1984 - loss 0.00791381 - time (sec): 10.76 - samples/sec: 1555.82 - lr: 0.000005 - momentum: 0.000000
2023-10-17 12:05:28,038 epoch 10 - iter 396/1984 - loss 0.00907342 - time (sec): 19.70 - samples/sec: 1675.12 - lr: 0.000004 - momentum: 0.000000
2023-10-17 12:05:37,094 epoch 10 - iter 594/1984 - loss 0.00841106 - time (sec): 28.76 - samples/sec: 1736.20 - lr: 0.000004 - momentum: 0.000000
2023-10-17 12:05:46,297 epoch 10 - iter 792/1984 - loss 0.00778224 - time (sec): 37.96 - samples/sec: 1732.33 - lr: 0.000003 - momentum: 0.000000
2023-10-17 12:05:55,632 epoch 10 - iter 990/1984 - loss 0.00790979 - time (sec): 47.30 - samples/sec: 1754.39 - lr: 0.000003 - momentum: 0.000000
2023-10-17 12:06:06,086 epoch 10 - iter 1188/1984 - loss 0.00810074 - time (sec): 57.75 - samples/sec: 1728.90 - lr: 0.000002 - momentum: 0.000000
2023-10-17 12:06:16,433 epoch 10 - iter 1386/1984 - loss 0.00812282 - time (sec): 68.10 - samples/sec: 1708.90 - lr: 0.000002 - momentum: 0.000000
2023-10-17 12:06:26,896 epoch 10 - iter 1584/1984 - loss 0.00827390 - time (sec): 78.56 - samples/sec: 1683.18 - lr: 0.000001 - momentum: 0.000000
2023-10-17 12:06:37,153 epoch 10 - iter 1782/1984 - loss 0.00865749 - time (sec): 88.82 - samples/sec: 1664.10 - lr: 0.000001 - momentum: 0.000000
2023-10-17 12:06:47,233 epoch 10 - iter 1980/1984 - loss 0.00828889 - time (sec): 98.90 - samples/sec: 1655.75 - lr: 0.000000 - momentum: 0.000000
2023-10-17 12:06:47,441 ----------------------------------------------------------------------------------------------------
2023-10-17 12:06:47,441 EPOCH 10 done: loss 0.0083 - lr: 0.000000
2023-10-17 12:06:51,115 DEV : loss 0.2530412971973419 - f1-score (micro avg)  0.7575
2023-10-17 12:06:51,546 ----------------------------------------------------------------------------------------------------
2023-10-17 12:06:51,547 Loading model from best epoch ...
2023-10-17 12:06:52,995 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
2023-10-17 12:06:56,574 
Results:
- F-score (micro) 0.7556
- F-score (macro) 0.6677
- Accuracy 0.6401

By class:
              precision    recall  f1-score   support

         LOC     0.8259    0.8183    0.8221       655
         PER     0.6522    0.8072    0.7214       223
         ORG     0.5000    0.4252    0.4596       127

   micro avg     0.7454    0.7662    0.7556      1005
   macro avg     0.6594    0.6836    0.6677      1005
weighted avg     0.7462    0.7662    0.7539      1005

2023-10-17 12:06:56,574 ----------------------------------------------------------------------------------------------------