File size: 24,099 Bytes
593934b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
2023-10-18 20:56:03,815 ----------------------------------------------------------------------------------------------------
2023-10-18 20:56:03,816 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 128)
        (position_embeddings): Embedding(512, 128)
        (token_type_embeddings): Embedding(2, 128)
        (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-1): 2 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=128, out_features=128, bias=True)
                (key): Linear(in_features=128, out_features=128, bias=True)
                (value): Linear(in_features=128, out_features=128, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=128, out_features=128, bias=True)
                (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=128, out_features=512, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=512, out_features=128, bias=True)
              (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=128, out_features=128, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=128, out_features=13, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-18 20:56:03,816 ----------------------------------------------------------------------------------------------------
2023-10-18 20:56:03,816 MultiCorpus: 7936 train + 992 dev + 992 test sentences
 - NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /root/.flair/datasets/ner_icdar_europeana/fr
2023-10-18 20:56:03,816 ----------------------------------------------------------------------------------------------------
2023-10-18 20:56:03,816 Train:  7936 sentences
2023-10-18 20:56:03,816         (train_with_dev=False, train_with_test=False)
2023-10-18 20:56:03,816 ----------------------------------------------------------------------------------------------------
2023-10-18 20:56:03,816 Training Params:
2023-10-18 20:56:03,816  - learning_rate: "5e-05" 
2023-10-18 20:56:03,816  - mini_batch_size: "8"
2023-10-18 20:56:03,816  - max_epochs: "10"
2023-10-18 20:56:03,816  - shuffle: "True"
2023-10-18 20:56:03,816 ----------------------------------------------------------------------------------------------------
2023-10-18 20:56:03,816 Plugins:
2023-10-18 20:56:03,816  - TensorboardLogger
2023-10-18 20:56:03,816  - LinearScheduler | warmup_fraction: '0.1'
2023-10-18 20:56:03,816 ----------------------------------------------------------------------------------------------------
2023-10-18 20:56:03,816 Final evaluation on model from best epoch (best-model.pt)
2023-10-18 20:56:03,816  - metric: "('micro avg', 'f1-score')"
2023-10-18 20:56:03,816 ----------------------------------------------------------------------------------------------------
2023-10-18 20:56:03,816 Computation:
2023-10-18 20:56:03,816  - compute on device: cuda:0
2023-10-18 20:56:03,816  - embedding storage: none
2023-10-18 20:56:03,816 ----------------------------------------------------------------------------------------------------
2023-10-18 20:56:03,816 Model training base path: "hmbench-icdar/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-18 20:56:03,816 ----------------------------------------------------------------------------------------------------
2023-10-18 20:56:03,816 ----------------------------------------------------------------------------------------------------
2023-10-18 20:56:03,817 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-18 20:56:06,181 epoch 1 - iter 99/992 - loss 2.37417653 - time (sec): 2.36 - samples/sec: 6970.36 - lr: 0.000005 - momentum: 0.000000
2023-10-18 20:56:08,505 epoch 1 - iter 198/992 - loss 2.04547181 - time (sec): 4.69 - samples/sec: 6978.26 - lr: 0.000010 - momentum: 0.000000
2023-10-18 20:56:10,702 epoch 1 - iter 297/992 - loss 1.63644393 - time (sec): 6.88 - samples/sec: 7234.43 - lr: 0.000015 - momentum: 0.000000
2023-10-18 20:56:12,678 epoch 1 - iter 396/992 - loss 1.35011565 - time (sec): 8.86 - samples/sec: 7467.10 - lr: 0.000020 - momentum: 0.000000
2023-10-18 20:56:14,632 epoch 1 - iter 495/992 - loss 1.18194660 - time (sec): 10.82 - samples/sec: 7693.85 - lr: 0.000025 - momentum: 0.000000
2023-10-18 20:56:16,785 epoch 1 - iter 594/992 - loss 1.05850892 - time (sec): 12.97 - samples/sec: 7664.55 - lr: 0.000030 - momentum: 0.000000
2023-10-18 20:56:18,922 epoch 1 - iter 693/992 - loss 0.96209046 - time (sec): 15.11 - samples/sec: 7664.05 - lr: 0.000035 - momentum: 0.000000
2023-10-18 20:56:21,060 epoch 1 - iter 792/992 - loss 0.88404985 - time (sec): 17.24 - samples/sec: 7634.19 - lr: 0.000040 - momentum: 0.000000
2023-10-18 20:56:23,256 epoch 1 - iter 891/992 - loss 0.82833250 - time (sec): 19.44 - samples/sec: 7576.98 - lr: 0.000045 - momentum: 0.000000
2023-10-18 20:56:25,516 epoch 1 - iter 990/992 - loss 0.77917868 - time (sec): 21.70 - samples/sec: 7543.24 - lr: 0.000050 - momentum: 0.000000
2023-10-18 20:56:25,565 ----------------------------------------------------------------------------------------------------
2023-10-18 20:56:25,565 EPOCH 1 done: loss 0.7778 - lr: 0.000050
2023-10-18 20:56:27,108 DEV : loss 0.2251289188861847 - f1-score (micro avg)  0.2771
2023-10-18 20:56:27,126 saving best model
2023-10-18 20:56:27,158 ----------------------------------------------------------------------------------------------------
2023-10-18 20:56:29,368 epoch 2 - iter 99/992 - loss 0.32167945 - time (sec): 2.21 - samples/sec: 7301.80 - lr: 0.000049 - momentum: 0.000000
2023-10-18 20:56:31,577 epoch 2 - iter 198/992 - loss 0.29255043 - time (sec): 4.42 - samples/sec: 7535.62 - lr: 0.000049 - momentum: 0.000000
2023-10-18 20:56:33,795 epoch 2 - iter 297/992 - loss 0.29067708 - time (sec): 6.64 - samples/sec: 7386.21 - lr: 0.000048 - momentum: 0.000000
2023-10-18 20:56:36,015 epoch 2 - iter 396/992 - loss 0.29025565 - time (sec): 8.86 - samples/sec: 7363.21 - lr: 0.000048 - momentum: 0.000000
2023-10-18 20:56:38,278 epoch 2 - iter 495/992 - loss 0.28143687 - time (sec): 11.12 - samples/sec: 7310.90 - lr: 0.000047 - momentum: 0.000000
2023-10-18 20:56:40,527 epoch 2 - iter 594/992 - loss 0.27945389 - time (sec): 13.37 - samples/sec: 7270.36 - lr: 0.000047 - momentum: 0.000000
2023-10-18 20:56:42,728 epoch 2 - iter 693/992 - loss 0.27975877 - time (sec): 15.57 - samples/sec: 7261.00 - lr: 0.000046 - momentum: 0.000000
2023-10-18 20:56:45,070 epoch 2 - iter 792/992 - loss 0.27735348 - time (sec): 17.91 - samples/sec: 7256.35 - lr: 0.000046 - momentum: 0.000000
2023-10-18 20:56:47,388 epoch 2 - iter 891/992 - loss 0.27681776 - time (sec): 20.23 - samples/sec: 7272.50 - lr: 0.000045 - momentum: 0.000000
2023-10-18 20:56:49,647 epoch 2 - iter 990/992 - loss 0.27381910 - time (sec): 22.49 - samples/sec: 7277.31 - lr: 0.000044 - momentum: 0.000000
2023-10-18 20:56:49,690 ----------------------------------------------------------------------------------------------------
2023-10-18 20:56:49,691 EPOCH 2 done: loss 0.2739 - lr: 0.000044
2023-10-18 20:56:51,906 DEV : loss 0.18277420103549957 - f1-score (micro avg)  0.3656
2023-10-18 20:56:51,924 saving best model
2023-10-18 20:56:51,958 ----------------------------------------------------------------------------------------------------
2023-10-18 20:56:54,200 epoch 3 - iter 99/992 - loss 0.22769296 - time (sec): 2.24 - samples/sec: 7466.59 - lr: 0.000044 - momentum: 0.000000
2023-10-18 20:56:56,425 epoch 3 - iter 198/992 - loss 0.23820508 - time (sec): 4.47 - samples/sec: 7317.55 - lr: 0.000043 - momentum: 0.000000
2023-10-18 20:56:58,657 epoch 3 - iter 297/992 - loss 0.24041108 - time (sec): 6.70 - samples/sec: 7300.94 - lr: 0.000043 - momentum: 0.000000
2023-10-18 20:57:00,926 epoch 3 - iter 396/992 - loss 0.23852730 - time (sec): 8.97 - samples/sec: 7228.49 - lr: 0.000042 - momentum: 0.000000
2023-10-18 20:57:03,244 epoch 3 - iter 495/992 - loss 0.23174392 - time (sec): 11.29 - samples/sec: 7235.37 - lr: 0.000042 - momentum: 0.000000
2023-10-18 20:57:05,436 epoch 3 - iter 594/992 - loss 0.23397501 - time (sec): 13.48 - samples/sec: 7202.93 - lr: 0.000041 - momentum: 0.000000
2023-10-18 20:57:07,666 epoch 3 - iter 693/992 - loss 0.23953902 - time (sec): 15.71 - samples/sec: 7229.79 - lr: 0.000041 - momentum: 0.000000
2023-10-18 20:57:09,905 epoch 3 - iter 792/992 - loss 0.23601306 - time (sec): 17.95 - samples/sec: 7263.88 - lr: 0.000040 - momentum: 0.000000
2023-10-18 20:57:12,148 epoch 3 - iter 891/992 - loss 0.23207443 - time (sec): 20.19 - samples/sec: 7280.65 - lr: 0.000039 - momentum: 0.000000
2023-10-18 20:57:14,478 epoch 3 - iter 990/992 - loss 0.23020989 - time (sec): 22.52 - samples/sec: 7262.19 - lr: 0.000039 - momentum: 0.000000
2023-10-18 20:57:14,524 ----------------------------------------------------------------------------------------------------
2023-10-18 20:57:14,525 EPOCH 3 done: loss 0.2301 - lr: 0.000039
2023-10-18 20:57:16,353 DEV : loss 0.1740075945854187 - f1-score (micro avg)  0.3899
2023-10-18 20:57:16,372 saving best model
2023-10-18 20:57:16,407 ----------------------------------------------------------------------------------------------------
2023-10-18 20:57:18,696 epoch 4 - iter 99/992 - loss 0.21972604 - time (sec): 2.29 - samples/sec: 6880.22 - lr: 0.000038 - momentum: 0.000000
2023-10-18 20:57:20,907 epoch 4 - iter 198/992 - loss 0.21771922 - time (sec): 4.50 - samples/sec: 7255.82 - lr: 0.000038 - momentum: 0.000000
2023-10-18 20:57:23,071 epoch 4 - iter 297/992 - loss 0.21406813 - time (sec): 6.66 - samples/sec: 7184.34 - lr: 0.000037 - momentum: 0.000000
2023-10-18 20:57:25,280 epoch 4 - iter 396/992 - loss 0.21159074 - time (sec): 8.87 - samples/sec: 7161.50 - lr: 0.000037 - momentum: 0.000000
2023-10-18 20:57:27,521 epoch 4 - iter 495/992 - loss 0.21280319 - time (sec): 11.11 - samples/sec: 7252.30 - lr: 0.000036 - momentum: 0.000000
2023-10-18 20:57:29,763 epoch 4 - iter 594/992 - loss 0.21029475 - time (sec): 13.36 - samples/sec: 7261.19 - lr: 0.000036 - momentum: 0.000000
2023-10-18 20:57:31,997 epoch 4 - iter 693/992 - loss 0.20859482 - time (sec): 15.59 - samples/sec: 7267.30 - lr: 0.000035 - momentum: 0.000000
2023-10-18 20:57:34,226 epoch 4 - iter 792/992 - loss 0.20972295 - time (sec): 17.82 - samples/sec: 7290.54 - lr: 0.000034 - momentum: 0.000000
2023-10-18 20:57:36,517 epoch 4 - iter 891/992 - loss 0.20628428 - time (sec): 20.11 - samples/sec: 7298.49 - lr: 0.000034 - momentum: 0.000000
2023-10-18 20:57:38,726 epoch 4 - iter 990/992 - loss 0.20626360 - time (sec): 22.32 - samples/sec: 7330.91 - lr: 0.000033 - momentum: 0.000000
2023-10-18 20:57:38,772 ----------------------------------------------------------------------------------------------------
2023-10-18 20:57:38,772 EPOCH 4 done: loss 0.2061 - lr: 0.000033
2023-10-18 20:57:40,612 DEV : loss 0.16479910910129547 - f1-score (micro avg)  0.4101
2023-10-18 20:57:40,630 saving best model
2023-10-18 20:57:40,666 ----------------------------------------------------------------------------------------------------
2023-10-18 20:57:42,943 epoch 5 - iter 99/992 - loss 0.17177104 - time (sec): 2.28 - samples/sec: 7353.67 - lr: 0.000033 - momentum: 0.000000
2023-10-18 20:57:45,125 epoch 5 - iter 198/992 - loss 0.18004855 - time (sec): 4.46 - samples/sec: 7278.40 - lr: 0.000032 - momentum: 0.000000
2023-10-18 20:57:47,298 epoch 5 - iter 297/992 - loss 0.18559241 - time (sec): 6.63 - samples/sec: 7192.47 - lr: 0.000032 - momentum: 0.000000
2023-10-18 20:57:49,624 epoch 5 - iter 396/992 - loss 0.18522087 - time (sec): 8.96 - samples/sec: 7199.80 - lr: 0.000031 - momentum: 0.000000
2023-10-18 20:57:51,819 epoch 5 - iter 495/992 - loss 0.18653077 - time (sec): 11.15 - samples/sec: 7216.72 - lr: 0.000031 - momentum: 0.000000
2023-10-18 20:57:54,038 epoch 5 - iter 594/992 - loss 0.18784304 - time (sec): 13.37 - samples/sec: 7224.68 - lr: 0.000030 - momentum: 0.000000
2023-10-18 20:57:56,273 epoch 5 - iter 693/992 - loss 0.18868299 - time (sec): 15.61 - samples/sec: 7255.64 - lr: 0.000029 - momentum: 0.000000
2023-10-18 20:57:58,607 epoch 5 - iter 792/992 - loss 0.18764218 - time (sec): 17.94 - samples/sec: 7244.21 - lr: 0.000029 - momentum: 0.000000
2023-10-18 20:58:00,866 epoch 5 - iter 891/992 - loss 0.18960836 - time (sec): 20.20 - samples/sec: 7275.43 - lr: 0.000028 - momentum: 0.000000
2023-10-18 20:58:03,136 epoch 5 - iter 990/992 - loss 0.19225274 - time (sec): 22.47 - samples/sec: 7281.35 - lr: 0.000028 - momentum: 0.000000
2023-10-18 20:58:03,191 ----------------------------------------------------------------------------------------------------
2023-10-18 20:58:03,191 EPOCH 5 done: loss 0.1923 - lr: 0.000028
2023-10-18 20:58:05,000 DEV : loss 0.15571151673793793 - f1-score (micro avg)  0.429
2023-10-18 20:58:05,018 saving best model
2023-10-18 20:58:05,051 ----------------------------------------------------------------------------------------------------
2023-10-18 20:58:07,306 epoch 6 - iter 99/992 - loss 0.17941164 - time (sec): 2.25 - samples/sec: 7240.83 - lr: 0.000027 - momentum: 0.000000
2023-10-18 20:58:09,525 epoch 6 - iter 198/992 - loss 0.17285384 - time (sec): 4.47 - samples/sec: 7150.39 - lr: 0.000027 - momentum: 0.000000
2023-10-18 20:58:11,791 epoch 6 - iter 297/992 - loss 0.17178395 - time (sec): 6.74 - samples/sec: 7272.32 - lr: 0.000026 - momentum: 0.000000
2023-10-18 20:58:14,001 epoch 6 - iter 396/992 - loss 0.17127824 - time (sec): 8.95 - samples/sec: 7269.39 - lr: 0.000026 - momentum: 0.000000
2023-10-18 20:58:16,238 epoch 6 - iter 495/992 - loss 0.17366195 - time (sec): 11.19 - samples/sec: 7241.92 - lr: 0.000025 - momentum: 0.000000
2023-10-18 20:58:18,505 epoch 6 - iter 594/992 - loss 0.17202885 - time (sec): 13.45 - samples/sec: 7246.43 - lr: 0.000024 - momentum: 0.000000
2023-10-18 20:58:20,637 epoch 6 - iter 693/992 - loss 0.17315227 - time (sec): 15.59 - samples/sec: 7274.96 - lr: 0.000024 - momentum: 0.000000
2023-10-18 20:58:22,852 epoch 6 - iter 792/992 - loss 0.17320411 - time (sec): 17.80 - samples/sec: 7271.31 - lr: 0.000023 - momentum: 0.000000
2023-10-18 20:58:25,041 epoch 6 - iter 891/992 - loss 0.17490211 - time (sec): 19.99 - samples/sec: 7285.57 - lr: 0.000023 - momentum: 0.000000
2023-10-18 20:58:27,314 epoch 6 - iter 990/992 - loss 0.17714492 - time (sec): 22.26 - samples/sec: 7351.83 - lr: 0.000022 - momentum: 0.000000
2023-10-18 20:58:27,362 ----------------------------------------------------------------------------------------------------
2023-10-18 20:58:27,363 EPOCH 6 done: loss 0.1770 - lr: 0.000022
2023-10-18 20:58:29,203 DEV : loss 0.15208245813846588 - f1-score (micro avg)  0.4522
2023-10-18 20:58:29,221 saving best model
2023-10-18 20:58:29,259 ----------------------------------------------------------------------------------------------------
2023-10-18 20:58:31,472 epoch 7 - iter 99/992 - loss 0.18307759 - time (sec): 2.21 - samples/sec: 7285.65 - lr: 0.000022 - momentum: 0.000000
2023-10-18 20:58:33,665 epoch 7 - iter 198/992 - loss 0.17513144 - time (sec): 4.41 - samples/sec: 7284.45 - lr: 0.000021 - momentum: 0.000000
2023-10-18 20:58:35,924 epoch 7 - iter 297/992 - loss 0.17363848 - time (sec): 6.66 - samples/sec: 7347.88 - lr: 0.000021 - momentum: 0.000000
2023-10-18 20:58:38,152 epoch 7 - iter 396/992 - loss 0.17849995 - time (sec): 8.89 - samples/sec: 7356.97 - lr: 0.000020 - momentum: 0.000000
2023-10-18 20:58:40,363 epoch 7 - iter 495/992 - loss 0.17302936 - time (sec): 11.10 - samples/sec: 7373.04 - lr: 0.000019 - momentum: 0.000000
2023-10-18 20:58:42,608 epoch 7 - iter 594/992 - loss 0.17173804 - time (sec): 13.35 - samples/sec: 7350.59 - lr: 0.000019 - momentum: 0.000000
2023-10-18 20:58:44,842 epoch 7 - iter 693/992 - loss 0.17176977 - time (sec): 15.58 - samples/sec: 7321.56 - lr: 0.000018 - momentum: 0.000000
2023-10-18 20:58:47,119 epoch 7 - iter 792/992 - loss 0.17139044 - time (sec): 17.86 - samples/sec: 7282.96 - lr: 0.000018 - momentum: 0.000000
2023-10-18 20:58:49,409 epoch 7 - iter 891/992 - loss 0.16779114 - time (sec): 20.15 - samples/sec: 7332.95 - lr: 0.000017 - momentum: 0.000000
2023-10-18 20:58:51,632 epoch 7 - iter 990/992 - loss 0.16865105 - time (sec): 22.37 - samples/sec: 7315.20 - lr: 0.000017 - momentum: 0.000000
2023-10-18 20:58:51,674 ----------------------------------------------------------------------------------------------------
2023-10-18 20:58:51,675 EPOCH 7 done: loss 0.1684 - lr: 0.000017
2023-10-18 20:58:53,875 DEV : loss 0.14835909008979797 - f1-score (micro avg)  0.4563
2023-10-18 20:58:53,893 saving best model
2023-10-18 20:58:53,930 ----------------------------------------------------------------------------------------------------
2023-10-18 20:58:56,137 epoch 8 - iter 99/992 - loss 0.16559554 - time (sec): 2.21 - samples/sec: 7584.76 - lr: 0.000016 - momentum: 0.000000
2023-10-18 20:58:58,402 epoch 8 - iter 198/992 - loss 0.15713025 - time (sec): 4.47 - samples/sec: 7401.59 - lr: 0.000016 - momentum: 0.000000
2023-10-18 20:59:00,698 epoch 8 - iter 297/992 - loss 0.15886284 - time (sec): 6.77 - samples/sec: 7505.02 - lr: 0.000015 - momentum: 0.000000
2023-10-18 20:59:02,941 epoch 8 - iter 396/992 - loss 0.16091614 - time (sec): 9.01 - samples/sec: 7381.27 - lr: 0.000014 - momentum: 0.000000
2023-10-18 20:59:05,171 epoch 8 - iter 495/992 - loss 0.15847892 - time (sec): 11.24 - samples/sec: 7290.06 - lr: 0.000014 - momentum: 0.000000
2023-10-18 20:59:07,413 epoch 8 - iter 594/992 - loss 0.16400434 - time (sec): 13.48 - samples/sec: 7279.96 - lr: 0.000013 - momentum: 0.000000
2023-10-18 20:59:09,638 epoch 8 - iter 693/992 - loss 0.16260905 - time (sec): 15.71 - samples/sec: 7267.37 - lr: 0.000013 - momentum: 0.000000
2023-10-18 20:59:11,837 epoch 8 - iter 792/992 - loss 0.16132712 - time (sec): 17.91 - samples/sec: 7275.69 - lr: 0.000012 - momentum: 0.000000
2023-10-18 20:59:14,069 epoch 8 - iter 891/992 - loss 0.16199039 - time (sec): 20.14 - samples/sec: 7290.01 - lr: 0.000012 - momentum: 0.000000
2023-10-18 20:59:16,290 epoch 8 - iter 990/992 - loss 0.16199479 - time (sec): 22.36 - samples/sec: 7317.37 - lr: 0.000011 - momentum: 0.000000
2023-10-18 20:59:16,333 ----------------------------------------------------------------------------------------------------
2023-10-18 20:59:16,334 EPOCH 8 done: loss 0.1618 - lr: 0.000011
2023-10-18 20:59:18,140 DEV : loss 0.14870117604732513 - f1-score (micro avg)  0.4715
2023-10-18 20:59:18,158 saving best model
2023-10-18 20:59:18,192 ----------------------------------------------------------------------------------------------------
2023-10-18 20:59:20,399 epoch 9 - iter 99/992 - loss 0.16182854 - time (sec): 2.21 - samples/sec: 7607.41 - lr: 0.000011 - momentum: 0.000000
2023-10-18 20:59:22,613 epoch 9 - iter 198/992 - loss 0.16350312 - time (sec): 4.42 - samples/sec: 7814.63 - lr: 0.000010 - momentum: 0.000000
2023-10-18 20:59:24,553 epoch 9 - iter 297/992 - loss 0.15746054 - time (sec): 6.36 - samples/sec: 7922.20 - lr: 0.000009 - momentum: 0.000000
2023-10-18 20:59:26,606 epoch 9 - iter 396/992 - loss 0.15577802 - time (sec): 8.41 - samples/sec: 7832.63 - lr: 0.000009 - momentum: 0.000000
2023-10-18 20:59:28,852 epoch 9 - iter 495/992 - loss 0.15518974 - time (sec): 10.66 - samples/sec: 7730.86 - lr: 0.000008 - momentum: 0.000000
2023-10-18 20:59:31,075 epoch 9 - iter 594/992 - loss 0.16021182 - time (sec): 12.88 - samples/sec: 7660.07 - lr: 0.000008 - momentum: 0.000000
2023-10-18 20:59:33,419 epoch 9 - iter 693/992 - loss 0.16018544 - time (sec): 15.23 - samples/sec: 7495.81 - lr: 0.000007 - momentum: 0.000000
2023-10-18 20:59:35,680 epoch 9 - iter 792/992 - loss 0.15779920 - time (sec): 17.49 - samples/sec: 7456.85 - lr: 0.000007 - momentum: 0.000000
2023-10-18 20:59:37,888 epoch 9 - iter 891/992 - loss 0.15767464 - time (sec): 19.70 - samples/sec: 7472.73 - lr: 0.000006 - momentum: 0.000000
2023-10-18 20:59:40,148 epoch 9 - iter 990/992 - loss 0.15624567 - time (sec): 21.96 - samples/sec: 7453.85 - lr: 0.000006 - momentum: 0.000000
2023-10-18 20:59:40,194 ----------------------------------------------------------------------------------------------------
2023-10-18 20:59:40,194 EPOCH 9 done: loss 0.1560 - lr: 0.000006
2023-10-18 20:59:42,035 DEV : loss 0.14903637766838074 - f1-score (micro avg)  0.4845
2023-10-18 20:59:42,054 saving best model
2023-10-18 20:59:42,087 ----------------------------------------------------------------------------------------------------
2023-10-18 20:59:44,366 epoch 10 - iter 99/992 - loss 0.16504639 - time (sec): 2.28 - samples/sec: 6883.04 - lr: 0.000005 - momentum: 0.000000
2023-10-18 20:59:46,843 epoch 10 - iter 198/992 - loss 0.15098993 - time (sec): 4.76 - samples/sec: 6839.12 - lr: 0.000004 - momentum: 0.000000
2023-10-18 20:59:49,054 epoch 10 - iter 297/992 - loss 0.15199686 - time (sec): 6.97 - samples/sec: 7033.05 - lr: 0.000004 - momentum: 0.000000
2023-10-18 20:59:51,283 epoch 10 - iter 396/992 - loss 0.15271679 - time (sec): 9.19 - samples/sec: 7085.91 - lr: 0.000003 - momentum: 0.000000
2023-10-18 20:59:53,521 epoch 10 - iter 495/992 - loss 0.15018940 - time (sec): 11.43 - samples/sec: 7162.47 - lr: 0.000003 - momentum: 0.000000
2023-10-18 20:59:55,709 epoch 10 - iter 594/992 - loss 0.15324209 - time (sec): 13.62 - samples/sec: 7237.12 - lr: 0.000002 - momentum: 0.000000
2023-10-18 20:59:57,949 epoch 10 - iter 693/992 - loss 0.15234940 - time (sec): 15.86 - samples/sec: 7258.78 - lr: 0.000002 - momentum: 0.000000
2023-10-18 21:00:00,169 epoch 10 - iter 792/992 - loss 0.15171088 - time (sec): 18.08 - samples/sec: 7283.86 - lr: 0.000001 - momentum: 0.000000
2023-10-18 21:00:02,422 epoch 10 - iter 891/992 - loss 0.15226960 - time (sec): 20.33 - samples/sec: 7245.68 - lr: 0.000001 - momentum: 0.000000
2023-10-18 21:00:04,665 epoch 10 - iter 990/992 - loss 0.15307673 - time (sec): 22.58 - samples/sec: 7252.76 - lr: 0.000000 - momentum: 0.000000
2023-10-18 21:00:04,718 ----------------------------------------------------------------------------------------------------
2023-10-18 21:00:04,718 EPOCH 10 done: loss 0.1532 - lr: 0.000000
2023-10-18 21:00:06,578 DEV : loss 0.1486775279045105 - f1-score (micro avg)  0.4917
2023-10-18 21:00:06,597 saving best model
2023-10-18 21:00:06,663 ----------------------------------------------------------------------------------------------------
2023-10-18 21:00:06,664 Loading model from best epoch ...
2023-10-18 21:00:06,735 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
2023-10-18 21:00:08,257 
Results:
- F-score (micro) 0.545
- F-score (macro) 0.3587
- Accuracy 0.4189

By class:
              precision    recall  f1-score   support

         LOC     0.6909    0.6824    0.6866       655
         PER     0.2964    0.5157    0.3764       223
         ORG     0.0385    0.0079    0.0131       127

   micro avg     0.5306    0.5602    0.5450      1005
   macro avg     0.3419    0.4020    0.3587      1005
weighted avg     0.5209    0.5602    0.5327      1005

2023-10-18 21:00:08,257 ----------------------------------------------------------------------------------------------------