Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697660802.46dc0c540dd0.3341.1 +3 -0
- test.tsv +0 -0
- training.log +245 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:282d14078571a9f7115a0264073e7926494675e4de75333f64c18caaaf1136fb
|
3 |
+
size 19045922
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 20:27:14 0.0000 0.8373 0.2124 0.3097 0.3020 0.3058 0.2027
|
3 |
+
2 20:27:46 0.0000 0.2517 0.1658 0.3969 0.4310 0.4132 0.2880
|
4 |
+
3 20:28:19 0.0000 0.2043 0.1485 0.5016 0.5249 0.5130 0.3769
|
5 |
+
4 20:28:51 0.0000 0.1776 0.1476 0.5699 0.5441 0.5567 0.4172
|
6 |
+
5 20:29:23 0.0000 0.1631 0.1393 0.5625 0.6109 0.5857 0.4485
|
7 |
+
6 20:29:55 0.0000 0.1508 0.1444 0.5618 0.6063 0.5832 0.4459
|
8 |
+
7 20:30:28 0.0000 0.1405 0.1465 0.5876 0.5803 0.5839 0.4457
|
9 |
+
8 20:31:00 0.0000 0.1331 0.1468 0.5842 0.6120 0.5978 0.4604
|
10 |
+
9 20:31:33 0.0000 0.1285 0.1488 0.5888 0.6075 0.5980 0.4602
|
11 |
+
10 20:32:05 0.0000 0.1234 0.1480 0.5889 0.6143 0.6013 0.4629
|
runs/events.out.tfevents.1697660802.46dc0c540dd0.3341.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:089523743dd4143afc128e50f638f7e6d034ad0e98f7998b48b72b803b06080f
|
3 |
+
size 1108164
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-18 20:26:42,123 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-18 20:26:42,123 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 128)
|
7 |
+
(position_embeddings): Embedding(512, 128)
|
8 |
+
(token_type_embeddings): Embedding(2, 128)
|
9 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-1): 2 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=128, out_features=128, bias=True)
|
18 |
+
(key): Linear(in_features=128, out_features=128, bias=True)
|
19 |
+
(value): Linear(in_features=128, out_features=128, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=128, out_features=512, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=512, out_features=128, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=128, out_features=13, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-18 20:26:42,123 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-18 20:26:42,123 MultiCorpus: 7936 train + 992 dev + 992 test sentences
|
52 |
+
- NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /root/.flair/datasets/ner_icdar_europeana/fr
|
53 |
+
2023-10-18 20:26:42,123 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-18 20:26:42,123 Train: 7936 sentences
|
55 |
+
2023-10-18 20:26:42,123 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-18 20:26:42,123 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-18 20:26:42,123 Training Params:
|
58 |
+
2023-10-18 20:26:42,123 - learning_rate: "5e-05"
|
59 |
+
2023-10-18 20:26:42,123 - mini_batch_size: "4"
|
60 |
+
2023-10-18 20:26:42,124 - max_epochs: "10"
|
61 |
+
2023-10-18 20:26:42,124 - shuffle: "True"
|
62 |
+
2023-10-18 20:26:42,124 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-18 20:26:42,124 Plugins:
|
64 |
+
2023-10-18 20:26:42,124 - TensorboardLogger
|
65 |
+
2023-10-18 20:26:42,124 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-18 20:26:42,124 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-18 20:26:42,124 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-18 20:26:42,124 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-18 20:26:42,124 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-18 20:26:42,124 Computation:
|
71 |
+
2023-10-18 20:26:42,124 - compute on device: cuda:0
|
72 |
+
2023-10-18 20:26:42,124 - embedding storage: none
|
73 |
+
2023-10-18 20:26:42,124 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-18 20:26:42,124 Model training base path: "hmbench-icdar/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
|
75 |
+
2023-10-18 20:26:42,124 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-18 20:26:42,124 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-18 20:26:42,124 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-18 20:26:45,221 epoch 1 - iter 198/1984 - loss 3.10528833 - time (sec): 3.10 - samples/sec: 5261.08 - lr: 0.000005 - momentum: 0.000000
|
79 |
+
2023-10-18 20:26:48,238 epoch 1 - iter 396/1984 - loss 2.51418141 - time (sec): 6.11 - samples/sec: 5312.12 - lr: 0.000010 - momentum: 0.000000
|
80 |
+
2023-10-18 20:26:51,300 epoch 1 - iter 594/1984 - loss 1.89531636 - time (sec): 9.18 - samples/sec: 5362.40 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-10-18 20:26:54,272 epoch 1 - iter 792/1984 - loss 1.54862823 - time (sec): 12.15 - samples/sec: 5412.02 - lr: 0.000020 - momentum: 0.000000
|
82 |
+
2023-10-18 20:26:57,272 epoch 1 - iter 990/1984 - loss 1.33496354 - time (sec): 15.15 - samples/sec: 5376.01 - lr: 0.000025 - momentum: 0.000000
|
83 |
+
2023-10-18 20:27:00,328 epoch 1 - iter 1188/1984 - loss 1.17925593 - time (sec): 18.20 - samples/sec: 5378.00 - lr: 0.000030 - momentum: 0.000000
|
84 |
+
2023-10-18 20:27:03,304 epoch 1 - iter 1386/1984 - loss 1.06364809 - time (sec): 21.18 - samples/sec: 5382.30 - lr: 0.000035 - momentum: 0.000000
|
85 |
+
2023-10-18 20:27:06,316 epoch 1 - iter 1584/1984 - loss 0.97153194 - time (sec): 24.19 - samples/sec: 5413.52 - lr: 0.000040 - momentum: 0.000000
|
86 |
+
2023-10-18 20:27:09,339 epoch 1 - iter 1782/1984 - loss 0.89943309 - time (sec): 27.21 - samples/sec: 5406.86 - lr: 0.000045 - momentum: 0.000000
|
87 |
+
2023-10-18 20:27:12,376 epoch 1 - iter 1980/1984 - loss 0.83845518 - time (sec): 30.25 - samples/sec: 5408.71 - lr: 0.000050 - momentum: 0.000000
|
88 |
+
2023-10-18 20:27:12,437 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-18 20:27:12,437 EPOCH 1 done: loss 0.8373 - lr: 0.000050
|
90 |
+
2023-10-18 20:27:14,301 DEV : loss 0.2123669981956482 - f1-score (micro avg) 0.3058
|
91 |
+
2023-10-18 20:27:14,319 saving best model
|
92 |
+
2023-10-18 20:27:14,350 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-18 20:27:17,415 epoch 2 - iter 198/1984 - loss 0.30751315 - time (sec): 3.06 - samples/sec: 5547.01 - lr: 0.000049 - momentum: 0.000000
|
94 |
+
2023-10-18 20:27:20,409 epoch 2 - iter 396/1984 - loss 0.28880847 - time (sec): 6.06 - samples/sec: 5584.38 - lr: 0.000049 - momentum: 0.000000
|
95 |
+
2023-10-18 20:27:23,444 epoch 2 - iter 594/1984 - loss 0.28273759 - time (sec): 9.09 - samples/sec: 5507.73 - lr: 0.000048 - momentum: 0.000000
|
96 |
+
2023-10-18 20:27:26,439 epoch 2 - iter 792/1984 - loss 0.27088719 - time (sec): 12.09 - samples/sec: 5458.52 - lr: 0.000048 - momentum: 0.000000
|
97 |
+
2023-10-18 20:27:29,491 epoch 2 - iter 990/1984 - loss 0.26504813 - time (sec): 15.14 - samples/sec: 5485.12 - lr: 0.000047 - momentum: 0.000000
|
98 |
+
2023-10-18 20:27:32,572 epoch 2 - iter 1188/1984 - loss 0.26339405 - time (sec): 18.22 - samples/sec: 5459.96 - lr: 0.000047 - momentum: 0.000000
|
99 |
+
2023-10-18 20:27:35,603 epoch 2 - iter 1386/1984 - loss 0.25689801 - time (sec): 21.25 - samples/sec: 5470.87 - lr: 0.000046 - momentum: 0.000000
|
100 |
+
2023-10-18 20:27:38,702 epoch 2 - iter 1584/1984 - loss 0.25609983 - time (sec): 24.35 - samples/sec: 5445.66 - lr: 0.000046 - momentum: 0.000000
|
101 |
+
2023-10-18 20:27:41,727 epoch 2 - iter 1782/1984 - loss 0.25426883 - time (sec): 27.38 - samples/sec: 5413.62 - lr: 0.000045 - momentum: 0.000000
|
102 |
+
2023-10-18 20:27:44,747 epoch 2 - iter 1980/1984 - loss 0.25189498 - time (sec): 30.40 - samples/sec: 5383.25 - lr: 0.000044 - momentum: 0.000000
|
103 |
+
2023-10-18 20:27:44,809 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-18 20:27:44,809 EPOCH 2 done: loss 0.2517 - lr: 0.000044
|
105 |
+
2023-10-18 20:27:46,652 DEV : loss 0.16580356657505035 - f1-score (micro avg) 0.4132
|
106 |
+
2023-10-18 20:27:46,671 saving best model
|
107 |
+
2023-10-18 20:27:46,706 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-18 20:27:49,900 epoch 3 - iter 198/1984 - loss 0.19382973 - time (sec): 3.19 - samples/sec: 5103.32 - lr: 0.000044 - momentum: 0.000000
|
109 |
+
2023-10-18 20:27:52,946 epoch 3 - iter 396/1984 - loss 0.18909038 - time (sec): 6.24 - samples/sec: 5257.64 - lr: 0.000043 - momentum: 0.000000
|
110 |
+
2023-10-18 20:27:55,955 epoch 3 - iter 594/1984 - loss 0.20993255 - time (sec): 9.25 - samples/sec: 5268.06 - lr: 0.000043 - momentum: 0.000000
|
111 |
+
2023-10-18 20:27:59,021 epoch 3 - iter 792/1984 - loss 0.20714776 - time (sec): 12.31 - samples/sec: 5332.54 - lr: 0.000042 - momentum: 0.000000
|
112 |
+
2023-10-18 20:28:02,011 epoch 3 - iter 990/1984 - loss 0.20713127 - time (sec): 15.30 - samples/sec: 5309.82 - lr: 0.000042 - momentum: 0.000000
|
113 |
+
2023-10-18 20:28:05,286 epoch 3 - iter 1188/1984 - loss 0.20727047 - time (sec): 18.58 - samples/sec: 5280.75 - lr: 0.000041 - momentum: 0.000000
|
114 |
+
2023-10-18 20:28:08,347 epoch 3 - iter 1386/1984 - loss 0.20873667 - time (sec): 21.64 - samples/sec: 5271.59 - lr: 0.000041 - momentum: 0.000000
|
115 |
+
2023-10-18 20:28:11,390 epoch 3 - iter 1584/1984 - loss 0.20804768 - time (sec): 24.68 - samples/sec: 5300.39 - lr: 0.000040 - momentum: 0.000000
|
116 |
+
2023-10-18 20:28:14,388 epoch 3 - iter 1782/1984 - loss 0.20568264 - time (sec): 27.68 - samples/sec: 5321.57 - lr: 0.000039 - momentum: 0.000000
|
117 |
+
2023-10-18 20:28:17,407 epoch 3 - iter 1980/1984 - loss 0.20417751 - time (sec): 30.70 - samples/sec: 5326.77 - lr: 0.000039 - momentum: 0.000000
|
118 |
+
2023-10-18 20:28:17,476 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-18 20:28:17,476 EPOCH 3 done: loss 0.2043 - lr: 0.000039
|
120 |
+
2023-10-18 20:28:19,319 DEV : loss 0.14851002395153046 - f1-score (micro avg) 0.513
|
121 |
+
2023-10-18 20:28:19,337 saving best model
|
122 |
+
2023-10-18 20:28:19,377 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-18 20:28:22,449 epoch 4 - iter 198/1984 - loss 0.18877601 - time (sec): 3.07 - samples/sec: 5327.50 - lr: 0.000038 - momentum: 0.000000
|
124 |
+
2023-10-18 20:28:25,530 epoch 4 - iter 396/1984 - loss 0.19191756 - time (sec): 6.15 - samples/sec: 5277.12 - lr: 0.000038 - momentum: 0.000000
|
125 |
+
2023-10-18 20:28:28,538 epoch 4 - iter 594/1984 - loss 0.18721169 - time (sec): 9.16 - samples/sec: 5235.98 - lr: 0.000037 - momentum: 0.000000
|
126 |
+
2023-10-18 20:28:31,607 epoch 4 - iter 792/1984 - loss 0.19120631 - time (sec): 12.23 - samples/sec: 5184.55 - lr: 0.000037 - momentum: 0.000000
|
127 |
+
2023-10-18 20:28:34,601 epoch 4 - iter 990/1984 - loss 0.18849200 - time (sec): 15.22 - samples/sec: 5215.47 - lr: 0.000036 - momentum: 0.000000
|
128 |
+
2023-10-18 20:28:37,624 epoch 4 - iter 1188/1984 - loss 0.18373488 - time (sec): 18.25 - samples/sec: 5250.54 - lr: 0.000036 - momentum: 0.000000
|
129 |
+
2023-10-18 20:28:40,678 epoch 4 - iter 1386/1984 - loss 0.18383898 - time (sec): 21.30 - samples/sec: 5325.35 - lr: 0.000035 - momentum: 0.000000
|
130 |
+
2023-10-18 20:28:43,747 epoch 4 - iter 1584/1984 - loss 0.18100800 - time (sec): 24.37 - samples/sec: 5341.76 - lr: 0.000034 - momentum: 0.000000
|
131 |
+
2023-10-18 20:28:46,758 epoch 4 - iter 1782/1984 - loss 0.18083878 - time (sec): 27.38 - samples/sec: 5332.30 - lr: 0.000034 - momentum: 0.000000
|
132 |
+
2023-10-18 20:28:49,823 epoch 4 - iter 1980/1984 - loss 0.17764091 - time (sec): 30.44 - samples/sec: 5375.24 - lr: 0.000033 - momentum: 0.000000
|
133 |
+
2023-10-18 20:28:49,882 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-18 20:28:49,883 EPOCH 4 done: loss 0.1776 - lr: 0.000033
|
135 |
+
2023-10-18 20:28:51,692 DEV : loss 0.14755003154277802 - f1-score (micro avg) 0.5567
|
136 |
+
2023-10-18 20:28:51,711 saving best model
|
137 |
+
2023-10-18 20:28:51,746 ----------------------------------------------------------------------------------------------------
|
138 |
+
2023-10-18 20:28:54,714 epoch 5 - iter 198/1984 - loss 0.19822197 - time (sec): 2.97 - samples/sec: 5025.42 - lr: 0.000033 - momentum: 0.000000
|
139 |
+
2023-10-18 20:28:57,801 epoch 5 - iter 396/1984 - loss 0.16894933 - time (sec): 6.05 - samples/sec: 5373.09 - lr: 0.000032 - momentum: 0.000000
|
140 |
+
2023-10-18 20:29:00,850 epoch 5 - iter 594/1984 - loss 0.16781950 - time (sec): 9.10 - samples/sec: 5386.35 - lr: 0.000032 - momentum: 0.000000
|
141 |
+
2023-10-18 20:29:03,958 epoch 5 - iter 792/1984 - loss 0.16415652 - time (sec): 12.21 - samples/sec: 5406.11 - lr: 0.000031 - momentum: 0.000000
|
142 |
+
2023-10-18 20:29:06,959 epoch 5 - iter 990/1984 - loss 0.16205996 - time (sec): 15.21 - samples/sec: 5362.44 - lr: 0.000031 - momentum: 0.000000
|
143 |
+
2023-10-18 20:29:09,981 epoch 5 - iter 1188/1984 - loss 0.16241670 - time (sec): 18.23 - samples/sec: 5393.56 - lr: 0.000030 - momentum: 0.000000
|
144 |
+
2023-10-18 20:29:13,014 epoch 5 - iter 1386/1984 - loss 0.16432711 - time (sec): 21.27 - samples/sec: 5406.25 - lr: 0.000029 - momentum: 0.000000
|
145 |
+
2023-10-18 20:29:16,025 epoch 5 - iter 1584/1984 - loss 0.16348040 - time (sec): 24.28 - samples/sec: 5420.92 - lr: 0.000029 - momentum: 0.000000
|
146 |
+
2023-10-18 20:29:19,029 epoch 5 - iter 1782/1984 - loss 0.16364024 - time (sec): 27.28 - samples/sec: 5416.91 - lr: 0.000028 - momentum: 0.000000
|
147 |
+
2023-10-18 20:29:22,045 epoch 5 - iter 1980/1984 - loss 0.16319243 - time (sec): 30.30 - samples/sec: 5401.10 - lr: 0.000028 - momentum: 0.000000
|
148 |
+
2023-10-18 20:29:22,104 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-18 20:29:22,104 EPOCH 5 done: loss 0.1631 - lr: 0.000028
|
150 |
+
2023-10-18 20:29:23,921 DEV : loss 0.13933779299259186 - f1-score (micro avg) 0.5857
|
151 |
+
2023-10-18 20:29:23,939 saving best model
|
152 |
+
2023-10-18 20:29:23,973 ----------------------------------------------------------------------------------------------------
|
153 |
+
2023-10-18 20:29:27,070 epoch 6 - iter 198/1984 - loss 0.17797563 - time (sec): 3.10 - samples/sec: 4977.75 - lr: 0.000027 - momentum: 0.000000
|
154 |
+
2023-10-18 20:29:30,099 epoch 6 - iter 396/1984 - loss 0.16344503 - time (sec): 6.12 - samples/sec: 5175.17 - lr: 0.000027 - momentum: 0.000000
|
155 |
+
2023-10-18 20:29:33,245 epoch 6 - iter 594/1984 - loss 0.16069556 - time (sec): 9.27 - samples/sec: 5117.65 - lr: 0.000026 - momentum: 0.000000
|
156 |
+
2023-10-18 20:29:36,261 epoch 6 - iter 792/1984 - loss 0.16257303 - time (sec): 12.29 - samples/sec: 5175.21 - lr: 0.000026 - momentum: 0.000000
|
157 |
+
2023-10-18 20:29:39,313 epoch 6 - iter 990/1984 - loss 0.16151177 - time (sec): 15.34 - samples/sec: 5240.88 - lr: 0.000025 - momentum: 0.000000
|
158 |
+
2023-10-18 20:29:42,401 epoch 6 - iter 1188/1984 - loss 0.15627333 - time (sec): 18.43 - samples/sec: 5283.96 - lr: 0.000024 - momentum: 0.000000
|
159 |
+
2023-10-18 20:29:45,429 epoch 6 - iter 1386/1984 - loss 0.15261274 - time (sec): 21.46 - samples/sec: 5332.64 - lr: 0.000024 - momentum: 0.000000
|
160 |
+
2023-10-18 20:29:48,133 epoch 6 - iter 1584/1984 - loss 0.15177407 - time (sec): 24.16 - samples/sec: 5415.88 - lr: 0.000023 - momentum: 0.000000
|
161 |
+
2023-10-18 20:29:50,811 epoch 6 - iter 1782/1984 - loss 0.15322561 - time (sec): 26.84 - samples/sec: 5487.27 - lr: 0.000023 - momentum: 0.000000
|
162 |
+
2023-10-18 20:29:53,582 epoch 6 - iter 1980/1984 - loss 0.15084002 - time (sec): 29.61 - samples/sec: 5527.18 - lr: 0.000022 - momentum: 0.000000
|
163 |
+
2023-10-18 20:29:53,643 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-18 20:29:53,644 EPOCH 6 done: loss 0.1508 - lr: 0.000022
|
165 |
+
2023-10-18 20:29:55,863 DEV : loss 0.14441362023353577 - f1-score (micro avg) 0.5832
|
166 |
+
2023-10-18 20:29:55,882 ----------------------------------------------------------------------------------------------------
|
167 |
+
2023-10-18 20:29:58,975 epoch 7 - iter 198/1984 - loss 0.17696709 - time (sec): 3.09 - samples/sec: 5179.02 - lr: 0.000022 - momentum: 0.000000
|
168 |
+
2023-10-18 20:30:01,974 epoch 7 - iter 396/1984 - loss 0.15547142 - time (sec): 6.09 - samples/sec: 5311.56 - lr: 0.000021 - momentum: 0.000000
|
169 |
+
2023-10-18 20:30:05,067 epoch 7 - iter 594/1984 - loss 0.15230504 - time (sec): 9.18 - samples/sec: 5276.61 - lr: 0.000021 - momentum: 0.000000
|
170 |
+
2023-10-18 20:30:08,135 epoch 7 - iter 792/1984 - loss 0.14464304 - time (sec): 12.25 - samples/sec: 5360.99 - lr: 0.000020 - momentum: 0.000000
|
171 |
+
2023-10-18 20:30:11,196 epoch 7 - iter 990/1984 - loss 0.14375802 - time (sec): 15.31 - samples/sec: 5387.28 - lr: 0.000019 - momentum: 0.000000
|
172 |
+
2023-10-18 20:30:14,217 epoch 7 - iter 1188/1984 - loss 0.14330999 - time (sec): 18.33 - samples/sec: 5362.74 - lr: 0.000019 - momentum: 0.000000
|
173 |
+
2023-10-18 20:30:17,322 epoch 7 - iter 1386/1984 - loss 0.14105304 - time (sec): 21.44 - samples/sec: 5365.32 - lr: 0.000018 - momentum: 0.000000
|
174 |
+
2023-10-18 20:30:20,389 epoch 7 - iter 1584/1984 - loss 0.14079064 - time (sec): 24.51 - samples/sec: 5340.24 - lr: 0.000018 - momentum: 0.000000
|
175 |
+
2023-10-18 20:30:23,438 epoch 7 - iter 1782/1984 - loss 0.14054323 - time (sec): 27.56 - samples/sec: 5332.07 - lr: 0.000017 - momentum: 0.000000
|
176 |
+
2023-10-18 20:30:26,642 epoch 7 - iter 1980/1984 - loss 0.14054386 - time (sec): 30.76 - samples/sec: 5324.44 - lr: 0.000017 - momentum: 0.000000
|
177 |
+
2023-10-18 20:30:26,701 ----------------------------------------------------------------------------------------------------
|
178 |
+
2023-10-18 20:30:26,701 EPOCH 7 done: loss 0.1405 - lr: 0.000017
|
179 |
+
2023-10-18 20:30:28,540 DEV : loss 0.14645995199680328 - f1-score (micro avg) 0.5839
|
180 |
+
2023-10-18 20:30:28,559 ----------------------------------------------------------------------------------------------------
|
181 |
+
2023-10-18 20:30:31,574 epoch 8 - iter 198/1984 - loss 0.13505995 - time (sec): 3.01 - samples/sec: 5338.26 - lr: 0.000016 - momentum: 0.000000
|
182 |
+
2023-10-18 20:30:34,585 epoch 8 - iter 396/1984 - loss 0.13300452 - time (sec): 6.03 - samples/sec: 5274.07 - lr: 0.000016 - momentum: 0.000000
|
183 |
+
2023-10-18 20:30:37,605 epoch 8 - iter 594/1984 - loss 0.13513264 - time (sec): 9.05 - samples/sec: 5218.46 - lr: 0.000015 - momentum: 0.000000
|
184 |
+
2023-10-18 20:30:40,619 epoch 8 - iter 792/1984 - loss 0.13631868 - time (sec): 12.06 - samples/sec: 5324.96 - lr: 0.000014 - momentum: 0.000000
|
185 |
+
2023-10-18 20:30:43,473 epoch 8 - iter 990/1984 - loss 0.13573158 - time (sec): 14.91 - samples/sec: 5368.03 - lr: 0.000014 - momentum: 0.000000
|
186 |
+
2023-10-18 20:30:46,628 epoch 8 - iter 1188/1984 - loss 0.13343905 - time (sec): 18.07 - samples/sec: 5410.44 - lr: 0.000013 - momentum: 0.000000
|
187 |
+
2023-10-18 20:30:49,733 epoch 8 - iter 1386/1984 - loss 0.13185324 - time (sec): 21.17 - samples/sec: 5358.71 - lr: 0.000013 - momentum: 0.000000
|
188 |
+
2023-10-18 20:30:52,837 epoch 8 - iter 1584/1984 - loss 0.13284754 - time (sec): 24.28 - samples/sec: 5373.28 - lr: 0.000012 - momentum: 0.000000
|
189 |
+
2023-10-18 20:30:55,870 epoch 8 - iter 1782/1984 - loss 0.13371484 - time (sec): 27.31 - samples/sec: 5380.92 - lr: 0.000012 - momentum: 0.000000
|
190 |
+
2023-10-18 20:30:58,973 epoch 8 - iter 1980/1984 - loss 0.13321577 - time (sec): 30.41 - samples/sec: 5383.22 - lr: 0.000011 - momentum: 0.000000
|
191 |
+
2023-10-18 20:30:59,035 ----------------------------------------------------------------------------------------------------
|
192 |
+
2023-10-18 20:30:59,035 EPOCH 8 done: loss 0.1331 - lr: 0.000011
|
193 |
+
2023-10-18 20:31:00,874 DEV : loss 0.1467994898557663 - f1-score (micro avg) 0.5978
|
194 |
+
2023-10-18 20:31:00,893 saving best model
|
195 |
+
2023-10-18 20:31:00,928 ----------------------------------------------------------------------------------------------------
|
196 |
+
2023-10-18 20:31:03,991 epoch 9 - iter 198/1984 - loss 0.11768644 - time (sec): 3.06 - samples/sec: 5303.58 - lr: 0.000011 - momentum: 0.000000
|
197 |
+
2023-10-18 20:31:07,031 epoch 9 - iter 396/1984 - loss 0.13017349 - time (sec): 6.10 - samples/sec: 5376.12 - lr: 0.000010 - momentum: 0.000000
|
198 |
+
2023-10-18 20:31:10,059 epoch 9 - iter 594/1984 - loss 0.13044117 - time (sec): 9.13 - samples/sec: 5287.11 - lr: 0.000009 - momentum: 0.000000
|
199 |
+
2023-10-18 20:31:13,053 epoch 9 - iter 792/1984 - loss 0.12921804 - time (sec): 12.12 - samples/sec: 5270.42 - lr: 0.000009 - momentum: 0.000000
|
200 |
+
2023-10-18 20:31:16,142 epoch 9 - iter 990/1984 - loss 0.12884571 - time (sec): 15.21 - samples/sec: 5310.97 - lr: 0.000008 - momentum: 0.000000
|
201 |
+
2023-10-18 20:31:19,206 epoch 9 - iter 1188/1984 - loss 0.12866639 - time (sec): 18.28 - samples/sec: 5297.82 - lr: 0.000008 - momentum: 0.000000
|
202 |
+
2023-10-18 20:31:22,278 epoch 9 - iter 1386/1984 - loss 0.12832734 - time (sec): 21.35 - samples/sec: 5353.47 - lr: 0.000007 - momentum: 0.000000
|
203 |
+
2023-10-18 20:31:25,302 epoch 9 - iter 1584/1984 - loss 0.12983739 - time (sec): 24.37 - samples/sec: 5340.26 - lr: 0.000007 - momentum: 0.000000
|
204 |
+
2023-10-18 20:31:28,367 epoch 9 - iter 1782/1984 - loss 0.12868462 - time (sec): 27.44 - samples/sec: 5343.64 - lr: 0.000006 - momentum: 0.000000
|
205 |
+
2023-10-18 20:31:31,449 epoch 9 - iter 1980/1984 - loss 0.12845863 - time (sec): 30.52 - samples/sec: 5363.40 - lr: 0.000006 - momentum: 0.000000
|
206 |
+
2023-10-18 20:31:31,511 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-10-18 20:31:31,511 EPOCH 9 done: loss 0.1285 - lr: 0.000006
|
208 |
+
2023-10-18 20:31:33,363 DEV : loss 0.1488402932882309 - f1-score (micro avg) 0.598
|
209 |
+
2023-10-18 20:31:33,382 saving best model
|
210 |
+
2023-10-18 20:31:33,419 ----------------------------------------------------------------------------------------------------
|
211 |
+
2023-10-18 20:31:36,322 epoch 10 - iter 198/1984 - loss 0.12152017 - time (sec): 2.90 - samples/sec: 5410.22 - lr: 0.000005 - momentum: 0.000000
|
212 |
+
2023-10-18 20:31:39,369 epoch 10 - iter 396/1984 - loss 0.12775156 - time (sec): 5.95 - samples/sec: 5394.26 - lr: 0.000004 - momentum: 0.000000
|
213 |
+
2023-10-18 20:31:42,403 epoch 10 - iter 594/1984 - loss 0.12825070 - time (sec): 8.98 - samples/sec: 5336.97 - lr: 0.000004 - momentum: 0.000000
|
214 |
+
2023-10-18 20:31:45,472 epoch 10 - iter 792/1984 - loss 0.12234506 - time (sec): 12.05 - samples/sec: 5362.92 - lr: 0.000003 - momentum: 0.000000
|
215 |
+
2023-10-18 20:31:48,524 epoch 10 - iter 990/1984 - loss 0.12321278 - time (sec): 15.11 - samples/sec: 5364.67 - lr: 0.000003 - momentum: 0.000000
|
216 |
+
2023-10-18 20:31:51,571 epoch 10 - iter 1188/1984 - loss 0.12468032 - time (sec): 18.15 - samples/sec: 5333.23 - lr: 0.000002 - momentum: 0.000000
|
217 |
+
2023-10-18 20:31:54,673 epoch 10 - iter 1386/1984 - loss 0.12362803 - time (sec): 21.25 - samples/sec: 5378.68 - lr: 0.000002 - momentum: 0.000000
|
218 |
+
2023-10-18 20:31:57,703 epoch 10 - iter 1584/1984 - loss 0.12226510 - time (sec): 24.28 - samples/sec: 5359.19 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2023-10-18 20:32:00,719 epoch 10 - iter 1782/1984 - loss 0.12224833 - time (sec): 27.30 - samples/sec: 5379.10 - lr: 0.000001 - momentum: 0.000000
|
220 |
+
2023-10-18 20:32:03,781 epoch 10 - iter 1980/1984 - loss 0.12319689 - time (sec): 30.36 - samples/sec: 5388.44 - lr: 0.000000 - momentum: 0.000000
|
221 |
+
2023-10-18 20:32:03,854 ----------------------------------------------------------------------------------------------------
|
222 |
+
2023-10-18 20:32:03,854 EPOCH 10 done: loss 0.1234 - lr: 0.000000
|
223 |
+
2023-10-18 20:32:05,695 DEV : loss 0.14801497757434845 - f1-score (micro avg) 0.6013
|
224 |
+
2023-10-18 20:32:05,713 saving best model
|
225 |
+
2023-10-18 20:32:05,773 ----------------------------------------------------------------------------------------------------
|
226 |
+
2023-10-18 20:32:05,774 Loading model from best epoch ...
|
227 |
+
2023-10-18 20:32:05,849 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
|
228 |
+
2023-10-18 20:32:07,351
|
229 |
+
Results:
|
230 |
+
- F-score (micro) 0.619
|
231 |
+
- F-score (macro) 0.4877
|
232 |
+
- Accuracy 0.4937
|
233 |
+
|
234 |
+
By class:
|
235 |
+
precision recall f1-score support
|
236 |
+
|
237 |
+
LOC 0.7309 0.7008 0.7155 655
|
238 |
+
PER 0.4337 0.6457 0.5189 223
|
239 |
+
ORG 0.4167 0.1575 0.2286 127
|
240 |
+
|
241 |
+
micro avg 0.6181 0.6199 0.6190 1005
|
242 |
+
macro avg 0.5271 0.5013 0.4877 1005
|
243 |
+
weighted avg 0.6252 0.6199 0.6104 1005
|
244 |
+
|
245 |
+
2023-10-18 20:32:07,351 ----------------------------------------------------------------------------------------------------
|