Upload ./training.log with huggingface_hub
Browse files- training.log +508 -0
training.log
ADDED
@@ -0,0 +1,508 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-24 14:31:22,491 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-24 14:31:22,493 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-24 14:31:22,493 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-24 14:31:22,493 MultiCorpus: 7936 train + 992 dev + 992 test sentences
|
316 |
+
- NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /home/ubuntu/.flair/datasets/ner_icdar_europeana/fr
|
317 |
+
2023-10-24 14:31:22,493 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-24 14:31:22,493 Train: 7936 sentences
|
319 |
+
2023-10-24 14:31:22,493 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-24 14:31:22,493 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-24 14:31:22,493 Training Params:
|
322 |
+
2023-10-24 14:31:22,493 - learning_rate: "3e-05"
|
323 |
+
2023-10-24 14:31:22,493 - mini_batch_size: "4"
|
324 |
+
2023-10-24 14:31:22,493 - max_epochs: "10"
|
325 |
+
2023-10-24 14:31:22,493 - shuffle: "True"
|
326 |
+
2023-10-24 14:31:22,493 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-24 14:31:22,493 Plugins:
|
328 |
+
2023-10-24 14:31:22,493 - TensorboardLogger
|
329 |
+
2023-10-24 14:31:22,493 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-24 14:31:22,493 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-24 14:31:22,493 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-24 14:31:22,493 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-24 14:31:22,493 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-24 14:31:22,493 Computation:
|
335 |
+
2023-10-24 14:31:22,493 - compute on device: cuda:0
|
336 |
+
2023-10-24 14:31:22,494 - embedding storage: none
|
337 |
+
2023-10-24 14:31:22,494 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-24 14:31:22,494 Model training base path: "hmbench-icdar/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
|
339 |
+
2023-10-24 14:31:22,494 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-24 14:31:22,494 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-24 14:31:22,494 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-24 14:31:34,835 epoch 1 - iter 198/1984 - loss 1.64021175 - time (sec): 12.34 - samples/sec: 1274.19 - lr: 0.000003 - momentum: 0.000000
|
343 |
+
2023-10-24 14:31:46,520 epoch 1 - iter 396/1984 - loss 0.98613041 - time (sec): 24.03 - samples/sec: 1291.18 - lr: 0.000006 - momentum: 0.000000
|
344 |
+
2023-10-24 14:31:58,355 epoch 1 - iter 594/1984 - loss 0.72657281 - time (sec): 35.86 - samples/sec: 1322.15 - lr: 0.000009 - momentum: 0.000000
|
345 |
+
2023-10-24 14:32:10,143 epoch 1 - iter 792/1984 - loss 0.58763880 - time (sec): 47.65 - samples/sec: 1329.63 - lr: 0.000012 - momentum: 0.000000
|
346 |
+
2023-10-24 14:32:22,176 epoch 1 - iter 990/1984 - loss 0.49473459 - time (sec): 59.68 - samples/sec: 1350.76 - lr: 0.000015 - momentum: 0.000000
|
347 |
+
2023-10-24 14:32:34,199 epoch 1 - iter 1188/1984 - loss 0.43574145 - time (sec): 71.70 - samples/sec: 1353.56 - lr: 0.000018 - momentum: 0.000000
|
348 |
+
2023-10-24 14:32:46,538 epoch 1 - iter 1386/1984 - loss 0.39286382 - time (sec): 84.04 - samples/sec: 1350.90 - lr: 0.000021 - momentum: 0.000000
|
349 |
+
2023-10-24 14:32:58,675 epoch 1 - iter 1584/1984 - loss 0.36073738 - time (sec): 96.18 - samples/sec: 1358.30 - lr: 0.000024 - momentum: 0.000000
|
350 |
+
2023-10-24 14:33:10,706 epoch 1 - iter 1782/1984 - loss 0.33631924 - time (sec): 108.21 - samples/sec: 1360.63 - lr: 0.000027 - momentum: 0.000000
|
351 |
+
2023-10-24 14:33:22,689 epoch 1 - iter 1980/1984 - loss 0.31569591 - time (sec): 120.19 - samples/sec: 1361.86 - lr: 0.000030 - momentum: 0.000000
|
352 |
+
2023-10-24 14:33:22,927 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-24 14:33:22,927 EPOCH 1 done: loss 0.3154 - lr: 0.000030
|
354 |
+
2023-10-24 14:33:25,939 DEV : loss 0.09478097409009933 - f1-score (micro avg) 0.7144
|
355 |
+
2023-10-24 14:33:25,953 saving best model
|
356 |
+
2023-10-24 14:33:26,514 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-24 14:33:38,596 epoch 2 - iter 198/1984 - loss 0.11789057 - time (sec): 12.08 - samples/sec: 1412.70 - lr: 0.000030 - momentum: 0.000000
|
358 |
+
2023-10-24 14:33:50,643 epoch 2 - iter 396/1984 - loss 0.12637511 - time (sec): 24.13 - samples/sec: 1385.10 - lr: 0.000029 - momentum: 0.000000
|
359 |
+
2023-10-24 14:34:02,939 epoch 2 - iter 594/1984 - loss 0.12285469 - time (sec): 36.42 - samples/sec: 1395.18 - lr: 0.000029 - momentum: 0.000000
|
360 |
+
2023-10-24 14:34:14,859 epoch 2 - iter 792/1984 - loss 0.11931934 - time (sec): 48.34 - samples/sec: 1383.19 - lr: 0.000029 - momentum: 0.000000
|
361 |
+
2023-10-24 14:34:26,987 epoch 2 - iter 990/1984 - loss 0.11648264 - time (sec): 60.47 - samples/sec: 1377.44 - lr: 0.000028 - momentum: 0.000000
|
362 |
+
2023-10-24 14:34:39,006 epoch 2 - iter 1188/1984 - loss 0.11833590 - time (sec): 72.49 - samples/sec: 1358.53 - lr: 0.000028 - momentum: 0.000000
|
363 |
+
2023-10-24 14:34:50,954 epoch 2 - iter 1386/1984 - loss 0.11886180 - time (sec): 84.44 - samples/sec: 1351.97 - lr: 0.000028 - momentum: 0.000000
|
364 |
+
2023-10-24 14:35:03,035 epoch 2 - iter 1584/1984 - loss 0.11758701 - time (sec): 96.52 - samples/sec: 1350.28 - lr: 0.000027 - momentum: 0.000000
|
365 |
+
2023-10-24 14:35:15,270 epoch 2 - iter 1782/1984 - loss 0.11634270 - time (sec): 108.76 - samples/sec: 1353.72 - lr: 0.000027 - momentum: 0.000000
|
366 |
+
2023-10-24 14:35:27,311 epoch 2 - iter 1980/1984 - loss 0.11438214 - time (sec): 120.80 - samples/sec: 1354.91 - lr: 0.000027 - momentum: 0.000000
|
367 |
+
2023-10-24 14:35:27,547 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-24 14:35:27,547 EPOCH 2 done: loss 0.1142 - lr: 0.000027
|
369 |
+
2023-10-24 14:35:30,641 DEV : loss 0.10835588723421097 - f1-score (micro avg) 0.7283
|
370 |
+
2023-10-24 14:35:30,656 saving best model
|
371 |
+
2023-10-24 14:35:31,361 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-24 14:35:43,401 epoch 3 - iter 198/1984 - loss 0.07469050 - time (sec): 12.04 - samples/sec: 1319.96 - lr: 0.000026 - momentum: 0.000000
|
373 |
+
2023-10-24 14:35:55,496 epoch 3 - iter 396/1984 - loss 0.07599030 - time (sec): 24.13 - samples/sec: 1364.30 - lr: 0.000026 - momentum: 0.000000
|
374 |
+
2023-10-24 14:36:07,686 epoch 3 - iter 594/1984 - loss 0.07603147 - time (sec): 36.32 - samples/sec: 1368.90 - lr: 0.000026 - momentum: 0.000000
|
375 |
+
2023-10-24 14:36:19,765 epoch 3 - iter 792/1984 - loss 0.08234754 - time (sec): 48.40 - samples/sec: 1349.84 - lr: 0.000025 - momentum: 0.000000
|
376 |
+
2023-10-24 14:36:31,750 epoch 3 - iter 990/1984 - loss 0.08578592 - time (sec): 60.39 - samples/sec: 1343.02 - lr: 0.000025 - momentum: 0.000000
|
377 |
+
2023-10-24 14:36:44,036 epoch 3 - iter 1188/1984 - loss 0.08858337 - time (sec): 72.67 - samples/sec: 1342.52 - lr: 0.000025 - momentum: 0.000000
|
378 |
+
2023-10-24 14:36:55,947 epoch 3 - iter 1386/1984 - loss 0.09044162 - time (sec): 84.59 - samples/sec: 1337.62 - lr: 0.000024 - momentum: 0.000000
|
379 |
+
2023-10-24 14:37:08,165 epoch 3 - iter 1584/1984 - loss 0.08919442 - time (sec): 96.80 - samples/sec: 1343.55 - lr: 0.000024 - momentum: 0.000000
|
380 |
+
2023-10-24 14:37:20,537 epoch 3 - iter 1782/1984 - loss 0.08855403 - time (sec): 109.18 - samples/sec: 1338.97 - lr: 0.000024 - momentum: 0.000000
|
381 |
+
2023-10-24 14:37:32,948 epoch 3 - iter 1980/1984 - loss 0.08691521 - time (sec): 121.59 - samples/sec: 1345.37 - lr: 0.000023 - momentum: 0.000000
|
382 |
+
2023-10-24 14:37:33,202 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-24 14:37:33,202 EPOCH 3 done: loss 0.0871 - lr: 0.000023
|
384 |
+
2023-10-24 14:37:36,304 DEV : loss 0.13157667219638824 - f1-score (micro avg) 0.7364
|
385 |
+
2023-10-24 14:37:36,319 saving best model
|
386 |
+
2023-10-24 14:37:36,975 ----------------------------------------------------------------------------------------------------
|
387 |
+
2023-10-24 14:37:49,088 epoch 4 - iter 198/1984 - loss 0.06040276 - time (sec): 12.11 - samples/sec: 1376.76 - lr: 0.000023 - momentum: 0.000000
|
388 |
+
2023-10-24 14:38:01,271 epoch 4 - iter 396/1984 - loss 0.05539813 - time (sec): 24.29 - samples/sec: 1354.61 - lr: 0.000023 - momentum: 0.000000
|
389 |
+
2023-10-24 14:38:13,104 epoch 4 - iter 594/1984 - loss 0.05490719 - time (sec): 36.13 - samples/sec: 1330.15 - lr: 0.000022 - momentum: 0.000000
|
390 |
+
2023-10-24 14:38:25,121 epoch 4 - iter 792/1984 - loss 0.06133338 - time (sec): 48.14 - samples/sec: 1335.44 - lr: 0.000022 - momentum: 0.000000
|
391 |
+
2023-10-24 14:38:37,262 epoch 4 - iter 990/1984 - loss 0.06105312 - time (sec): 60.29 - samples/sec: 1344.03 - lr: 0.000022 - momentum: 0.000000
|
392 |
+
2023-10-24 14:38:49,881 epoch 4 - iter 1188/1984 - loss 0.06152759 - time (sec): 72.90 - samples/sec: 1362.84 - lr: 0.000021 - momentum: 0.000000
|
393 |
+
2023-10-24 14:39:01,795 epoch 4 - iter 1386/1984 - loss 0.06044022 - time (sec): 84.82 - samples/sec: 1358.01 - lr: 0.000021 - momentum: 0.000000
|
394 |
+
2023-10-24 14:39:13,983 epoch 4 - iter 1584/1984 - loss 0.06312833 - time (sec): 97.01 - samples/sec: 1358.54 - lr: 0.000021 - momentum: 0.000000
|
395 |
+
2023-10-24 14:39:26,132 epoch 4 - iter 1782/1984 - loss 0.06372263 - time (sec): 109.16 - samples/sec: 1355.91 - lr: 0.000020 - momentum: 0.000000
|
396 |
+
2023-10-24 14:39:38,115 epoch 4 - iter 1980/1984 - loss 0.06435156 - time (sec): 121.14 - samples/sec: 1351.58 - lr: 0.000020 - momentum: 0.000000
|
397 |
+
2023-10-24 14:39:38,347 ----------------------------------------------------------------------------------------------------
|
398 |
+
2023-10-24 14:39:38,347 EPOCH 4 done: loss 0.0645 - lr: 0.000020
|
399 |
+
2023-10-24 14:39:41,437 DEV : loss 0.19480304419994354 - f1-score (micro avg) 0.74
|
400 |
+
2023-10-24 14:39:41,451 saving best model
|
401 |
+
2023-10-24 14:39:42,159 ----------------------------------------------------------------------------------------------------
|
402 |
+
2023-10-24 14:39:54,466 epoch 5 - iter 198/1984 - loss 0.05026390 - time (sec): 12.31 - samples/sec: 1372.20 - lr: 0.000020 - momentum: 0.000000
|
403 |
+
2023-10-24 14:40:06,513 epoch 5 - iter 396/1984 - loss 0.04926928 - time (sec): 24.35 - samples/sec: 1349.95 - lr: 0.000019 - momentum: 0.000000
|
404 |
+
2023-10-24 14:40:18,489 epoch 5 - iter 594/1984 - loss 0.04643126 - time (sec): 36.33 - samples/sec: 1343.01 - lr: 0.000019 - momentum: 0.000000
|
405 |
+
2023-10-24 14:40:30,764 epoch 5 - iter 792/1984 - loss 0.04774956 - time (sec): 48.60 - samples/sec: 1360.83 - lr: 0.000019 - momentum: 0.000000
|
406 |
+
2023-10-24 14:40:42,974 epoch 5 - iter 990/1984 - loss 0.04725796 - time (sec): 60.81 - samples/sec: 1339.73 - lr: 0.000018 - momentum: 0.000000
|
407 |
+
2023-10-24 14:40:55,011 epoch 5 - iter 1188/1984 - loss 0.04580115 - time (sec): 72.85 - samples/sec: 1341.47 - lr: 0.000018 - momentum: 0.000000
|
408 |
+
2023-10-24 14:41:07,111 epoch 5 - iter 1386/1984 - loss 0.04453556 - time (sec): 84.95 - samples/sec: 1344.63 - lr: 0.000018 - momentum: 0.000000
|
409 |
+
2023-10-24 14:41:19,265 epoch 5 - iter 1584/1984 - loss 0.04431866 - time (sec): 97.10 - samples/sec: 1350.72 - lr: 0.000017 - momentum: 0.000000
|
410 |
+
2023-10-24 14:41:31,590 epoch 5 - iter 1782/1984 - loss 0.04476987 - time (sec): 109.43 - samples/sec: 1353.50 - lr: 0.000017 - momentum: 0.000000
|
411 |
+
2023-10-24 14:41:43,646 epoch 5 - iter 1980/1984 - loss 0.04463271 - time (sec): 121.49 - samples/sec: 1348.16 - lr: 0.000017 - momentum: 0.000000
|
412 |
+
2023-10-24 14:41:43,874 ----------------------------------------------------------------------------------------------------
|
413 |
+
2023-10-24 14:41:43,874 EPOCH 5 done: loss 0.0447 - lr: 0.000017
|
414 |
+
2023-10-24 14:41:46,984 DEV : loss 0.18662182986736298 - f1-score (micro avg) 0.7517
|
415 |
+
2023-10-24 14:41:46,999 saving best model
|
416 |
+
2023-10-24 14:41:47,695 ----------------------------------------------------------------------------------------------------
|
417 |
+
2023-10-24 14:41:59,786 epoch 6 - iter 198/1984 - loss 0.02967304 - time (sec): 12.09 - samples/sec: 1328.35 - lr: 0.000016 - momentum: 0.000000
|
418 |
+
2023-10-24 14:42:11,835 epoch 6 - iter 396/1984 - loss 0.02628259 - time (sec): 24.14 - samples/sec: 1339.14 - lr: 0.000016 - momentum: 0.000000
|
419 |
+
2023-10-24 14:42:24,130 epoch 6 - iter 594/1984 - loss 0.03178036 - time (sec): 36.43 - samples/sec: 1353.58 - lr: 0.000016 - momentum: 0.000000
|
420 |
+
2023-10-24 14:42:36,229 epoch 6 - iter 792/1984 - loss 0.03031091 - time (sec): 48.53 - samples/sec: 1343.45 - lr: 0.000015 - momentum: 0.000000
|
421 |
+
2023-10-24 14:42:48,393 epoch 6 - iter 990/1984 - loss 0.03339443 - time (sec): 60.70 - samples/sec: 1357.58 - lr: 0.000015 - momentum: 0.000000
|
422 |
+
2023-10-24 14:43:00,431 epoch 6 - iter 1188/1984 - loss 0.03520672 - time (sec): 72.73 - samples/sec: 1355.98 - lr: 0.000015 - momentum: 0.000000
|
423 |
+
2023-10-24 14:43:12,544 epoch 6 - iter 1386/1984 - loss 0.03507182 - time (sec): 84.85 - samples/sec: 1355.23 - lr: 0.000014 - momentum: 0.000000
|
424 |
+
2023-10-24 14:43:24,608 epoch 6 - iter 1584/1984 - loss 0.03513777 - time (sec): 96.91 - samples/sec: 1351.09 - lr: 0.000014 - momentum: 0.000000
|
425 |
+
2023-10-24 14:43:36,845 epoch 6 - iter 1782/1984 - loss 0.03572007 - time (sec): 109.15 - samples/sec: 1347.12 - lr: 0.000014 - momentum: 0.000000
|
426 |
+
2023-10-24 14:43:49,108 epoch 6 - iter 1980/1984 - loss 0.03503102 - time (sec): 121.41 - samples/sec: 1349.11 - lr: 0.000013 - momentum: 0.000000
|
427 |
+
2023-10-24 14:43:49,334 ----------------------------------------------------------------------------------------------------
|
428 |
+
2023-10-24 14:43:49,334 EPOCH 6 done: loss 0.0350 - lr: 0.000013
|
429 |
+
2023-10-24 14:43:52,429 DEV : loss 0.21698078513145447 - f1-score (micro avg) 0.7558
|
430 |
+
2023-10-24 14:43:52,443 saving best model
|
431 |
+
2023-10-24 14:43:53,142 ----------------------------------------------------------------------------------------------------
|
432 |
+
2023-10-24 14:44:05,593 epoch 7 - iter 198/1984 - loss 0.02040662 - time (sec): 12.45 - samples/sec: 1367.24 - lr: 0.000013 - momentum: 0.000000
|
433 |
+
2023-10-24 14:44:17,602 epoch 7 - iter 396/1984 - loss 0.02479863 - time (sec): 24.46 - samples/sec: 1339.10 - lr: 0.000013 - momentum: 0.000000
|
434 |
+
2023-10-24 14:44:29,624 epoch 7 - iter 594/1984 - loss 0.02452452 - time (sec): 36.48 - samples/sec: 1320.81 - lr: 0.000012 - momentum: 0.000000
|
435 |
+
2023-10-24 14:44:41,592 epoch 7 - iter 792/1984 - loss 0.02504432 - time (sec): 48.45 - samples/sec: 1317.92 - lr: 0.000012 - momentum: 0.000000
|
436 |
+
2023-10-24 14:44:53,589 epoch 7 - iter 990/1984 - loss 0.02388568 - time (sec): 60.45 - samples/sec: 1311.14 - lr: 0.000012 - momentum: 0.000000
|
437 |
+
2023-10-24 14:45:05,715 epoch 7 - iter 1188/1984 - loss 0.02418482 - time (sec): 72.57 - samples/sec: 1325.54 - lr: 0.000011 - momentum: 0.000000
|
438 |
+
2023-10-24 14:45:17,830 epoch 7 - iter 1386/1984 - loss 0.02431743 - time (sec): 84.69 - samples/sec: 1329.80 - lr: 0.000011 - momentum: 0.000000
|
439 |
+
2023-10-24 14:45:29,872 epoch 7 - iter 1584/1984 - loss 0.02469299 - time (sec): 96.73 - samples/sec: 1328.05 - lr: 0.000011 - momentum: 0.000000
|
440 |
+
2023-10-24 14:45:42,461 epoch 7 - iter 1782/1984 - loss 0.02487510 - time (sec): 109.32 - samples/sec: 1339.43 - lr: 0.000010 - momentum: 0.000000
|
441 |
+
2023-10-24 14:45:54,623 epoch 7 - iter 1980/1984 - loss 0.02496138 - time (sec): 121.48 - samples/sec: 1348.11 - lr: 0.000010 - momentum: 0.000000
|
442 |
+
2023-10-24 14:45:54,851 ----------------------------------------------------------------------------------------------------
|
443 |
+
2023-10-24 14:45:54,851 EPOCH 7 done: loss 0.0249 - lr: 0.000010
|
444 |
+
2023-10-24 14:45:57,960 DEV : loss 0.22160428762435913 - f1-score (micro avg) 0.7497
|
445 |
+
2023-10-24 14:45:57,975 ----------------------------------------------------------------------------------------------------
|
446 |
+
2023-10-24 14:46:10,073 epoch 8 - iter 198/1984 - loss 0.01209168 - time (sec): 12.10 - samples/sec: 1363.85 - lr: 0.000010 - momentum: 0.000000
|
447 |
+
2023-10-24 14:46:21,985 epoch 8 - iter 396/1984 - loss 0.01639127 - time (sec): 24.01 - samples/sec: 1311.69 - lr: 0.000009 - momentum: 0.000000
|
448 |
+
2023-10-24 14:46:34,041 epoch 8 - iter 594/1984 - loss 0.01756574 - time (sec): 36.07 - samples/sec: 1317.22 - lr: 0.000009 - momentum: 0.000000
|
449 |
+
2023-10-24 14:46:46,342 epoch 8 - iter 792/1984 - loss 0.01608469 - time (sec): 48.37 - samples/sec: 1327.24 - lr: 0.000009 - momentum: 0.000000
|
450 |
+
2023-10-24 14:46:58,745 epoch 8 - iter 990/1984 - loss 0.01710028 - time (sec): 60.77 - samples/sec: 1342.92 - lr: 0.000008 - momentum: 0.000000
|
451 |
+
2023-10-24 14:47:10,850 epoch 8 - iter 1188/1984 - loss 0.01724256 - time (sec): 72.87 - samples/sec: 1342.88 - lr: 0.000008 - momentum: 0.000000
|
452 |
+
2023-10-24 14:47:23,213 epoch 8 - iter 1386/1984 - loss 0.01610726 - time (sec): 85.24 - samples/sec: 1359.59 - lr: 0.000008 - momentum: 0.000000
|
453 |
+
2023-10-24 14:47:35,153 epoch 8 - iter 1584/1984 - loss 0.01637683 - time (sec): 97.18 - samples/sec: 1348.61 - lr: 0.000007 - momentum: 0.000000
|
454 |
+
2023-10-24 14:47:47,301 epoch 8 - iter 1782/1984 - loss 0.01694080 - time (sec): 109.33 - samples/sec: 1350.21 - lr: 0.000007 - momentum: 0.000000
|
455 |
+
2023-10-24 14:47:59,271 epoch 8 - iter 1980/1984 - loss 0.01660634 - time (sec): 121.30 - samples/sec: 1348.03 - lr: 0.000007 - momentum: 0.000000
|
456 |
+
2023-10-24 14:47:59,545 ----------------------------------------------------------------------------------------------------
|
457 |
+
2023-10-24 14:47:59,545 EPOCH 8 done: loss 0.0166 - lr: 0.000007
|
458 |
+
2023-10-24 14:48:02,962 DEV : loss 0.23455536365509033 - f1-score (micro avg) 0.7546
|
459 |
+
2023-10-24 14:48:02,977 ----------------------------------------------------------------------------------------------------
|
460 |
+
2023-10-24 14:48:15,195 epoch 9 - iter 198/1984 - loss 0.00905006 - time (sec): 12.22 - samples/sec: 1411.26 - lr: 0.000006 - momentum: 0.000000
|
461 |
+
2023-10-24 14:48:27,508 epoch 9 - iter 396/1984 - loss 0.00911175 - time (sec): 24.53 - samples/sec: 1385.96 - lr: 0.000006 - momentum: 0.000000
|
462 |
+
2023-10-24 14:48:39,556 epoch 9 - iter 594/1984 - loss 0.01007165 - time (sec): 36.58 - samples/sec: 1379.07 - lr: 0.000006 - momentum: 0.000000
|
463 |
+
2023-10-24 14:48:51,753 epoch 9 - iter 792/1984 - loss 0.01181057 - time (sec): 48.77 - samples/sec: 1370.89 - lr: 0.000005 - momentum: 0.000000
|
464 |
+
2023-10-24 14:49:03,817 epoch 9 - iter 990/1984 - loss 0.01269583 - time (sec): 60.84 - samples/sec: 1365.37 - lr: 0.000005 - momentum: 0.000000
|
465 |
+
2023-10-24 14:49:16,171 epoch 9 - iter 1188/1984 - loss 0.01342504 - time (sec): 73.19 - samples/sec: 1372.60 - lr: 0.000005 - momentum: 0.000000
|
466 |
+
2023-10-24 14:49:28,166 epoch 9 - iter 1386/1984 - loss 0.01277923 - time (sec): 85.19 - samples/sec: 1363.74 - lr: 0.000004 - momentum: 0.000000
|
467 |
+
2023-10-24 14:49:40,133 epoch 9 - iter 1584/1984 - loss 0.01264028 - time (sec): 97.15 - samples/sec: 1356.06 - lr: 0.000004 - momentum: 0.000000
|
468 |
+
2023-10-24 14:49:52,112 epoch 9 - iter 1782/1984 - loss 0.01278804 - time (sec): 109.13 - samples/sec: 1351.36 - lr: 0.000004 - momentum: 0.000000
|
469 |
+
2023-10-24 14:50:04,183 epoch 9 - iter 1980/1984 - loss 0.01271379 - time (sec): 121.20 - samples/sec: 1350.44 - lr: 0.000003 - momentum: 0.000000
|
470 |
+
2023-10-24 14:50:04,438 ----------------------------------------------------------------------------------------------------
|
471 |
+
2023-10-24 14:50:04,438 EPOCH 9 done: loss 0.0127 - lr: 0.000003
|
472 |
+
2023-10-24 14:50:07,546 DEV : loss 0.24538028240203857 - f1-score (micro avg) 0.7562
|
473 |
+
2023-10-24 14:50:07,561 saving best model
|
474 |
+
2023-10-24 14:50:08,407 ----------------------------------------------------------------------------------------------------
|
475 |
+
2023-10-24 14:50:20,305 epoch 10 - iter 198/1984 - loss 0.01102981 - time (sec): 11.90 - samples/sec: 1336.30 - lr: 0.000003 - momentum: 0.000000
|
476 |
+
2023-10-24 14:50:32,270 epoch 10 - iter 396/1984 - loss 0.00908295 - time (sec): 23.86 - samples/sec: 1337.17 - lr: 0.000003 - momentum: 0.000000
|
477 |
+
2023-10-24 14:50:44,607 epoch 10 - iter 594/1984 - loss 0.00884709 - time (sec): 36.20 - samples/sec: 1365.66 - lr: 0.000002 - momentum: 0.000000
|
478 |
+
2023-10-24 14:50:56,745 epoch 10 - iter 792/1984 - loss 0.00853659 - time (sec): 48.34 - samples/sec: 1358.97 - lr: 0.000002 - momentum: 0.000000
|
479 |
+
2023-10-24 14:51:08,846 epoch 10 - iter 990/1984 - loss 0.00836767 - time (sec): 60.44 - samples/sec: 1359.78 - lr: 0.000002 - momentum: 0.000000
|
480 |
+
2023-10-24 14:51:20,973 epoch 10 - iter 1188/1984 - loss 0.00884835 - time (sec): 72.56 - samples/sec: 1363.32 - lr: 0.000001 - momentum: 0.000000
|
481 |
+
2023-10-24 14:51:33,018 epoch 10 - iter 1386/1984 - loss 0.00855372 - time (sec): 84.61 - samples/sec: 1354.25 - lr: 0.000001 - momentum: 0.000000
|
482 |
+
2023-10-24 14:51:45,186 epoch 10 - iter 1584/1984 - loss 0.00850122 - time (sec): 96.78 - samples/sec: 1351.56 - lr: 0.000001 - momentum: 0.000000
|
483 |
+
2023-10-24 14:51:57,670 epoch 10 - iter 1782/1984 - loss 0.00808050 - time (sec): 109.26 - samples/sec: 1347.29 - lr: 0.000000 - momentum: 0.000000
|
484 |
+
2023-10-24 14:52:09,831 epoch 10 - iter 1980/1984 - loss 0.00833862 - time (sec): 121.42 - samples/sec: 1346.80 - lr: 0.000000 - momentum: 0.000000
|
485 |
+
2023-10-24 14:52:10,101 ----------------------------------------------------------------------------------------------------
|
486 |
+
2023-10-24 14:52:10,101 EPOCH 10 done: loss 0.0083 - lr: 0.000000
|
487 |
+
2023-10-24 14:52:13,220 DEV : loss 0.24850758910179138 - f1-score (micro avg) 0.7547
|
488 |
+
2023-10-24 14:52:13,792 ----------------------------------------------------------------------------------------------------
|
489 |
+
2023-10-24 14:52:13,793 Loading model from best epoch ...
|
490 |
+
2023-10-24 14:52:15,747 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
|
491 |
+
2023-10-24 14:52:18,813
|
492 |
+
Results:
|
493 |
+
- F-score (micro) 0.7945
|
494 |
+
- F-score (macro) 0.7119
|
495 |
+
- Accuracy 0.6818
|
496 |
+
|
497 |
+
By class:
|
498 |
+
precision recall f1-score support
|
499 |
+
|
500 |
+
LOC 0.8256 0.8748 0.8495 655
|
501 |
+
PER 0.7366 0.8027 0.7682 223
|
502 |
+
ORG 0.5979 0.4567 0.5179 127
|
503 |
+
|
504 |
+
micro avg 0.7834 0.8060 0.7945 1005
|
505 |
+
macro avg 0.7201 0.7114 0.7119 1005
|
506 |
+
weighted avg 0.7771 0.8060 0.7896 1005
|
507 |
+
|
508 |
+
2023-10-24 14:52:18,814 ----------------------------------------------------------------------------------------------------
|