stefan-it commited on
Commit
0deccb1
·
1 Parent(s): 003bd2d

Upload ./training.log with huggingface_hub

Browse files
Files changed (1) hide show
  1. training.log +508 -0
training.log ADDED
@@ -0,0 +1,508 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-10-24 14:31:22,491 ----------------------------------------------------------------------------------------------------
2
+ 2023-10-24 14:31:22,493 Model: "SequenceTagger(
3
+ (embeddings): TransformerWordEmbeddings(
4
+ (model): BertModel(
5
+ (embeddings): BertEmbeddings(
6
+ (word_embeddings): Embedding(64001, 768)
7
+ (position_embeddings): Embedding(512, 768)
8
+ (token_type_embeddings): Embedding(2, 768)
9
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
10
+ (dropout): Dropout(p=0.1, inplace=False)
11
+ )
12
+ (encoder): BertEncoder(
13
+ (layer): ModuleList(
14
+ (0): BertLayer(
15
+ (attention): BertAttention(
16
+ (self): BertSelfAttention(
17
+ (query): Linear(in_features=768, out_features=768, bias=True)
18
+ (key): Linear(in_features=768, out_features=768, bias=True)
19
+ (value): Linear(in_features=768, out_features=768, bias=True)
20
+ (dropout): Dropout(p=0.1, inplace=False)
21
+ )
22
+ (output): BertSelfOutput(
23
+ (dense): Linear(in_features=768, out_features=768, bias=True)
24
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
25
+ (dropout): Dropout(p=0.1, inplace=False)
26
+ )
27
+ )
28
+ (intermediate): BertIntermediate(
29
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
30
+ (intermediate_act_fn): GELUActivation()
31
+ )
32
+ (output): BertOutput(
33
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
34
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
35
+ (dropout): Dropout(p=0.1, inplace=False)
36
+ )
37
+ )
38
+ (1): BertLayer(
39
+ (attention): BertAttention(
40
+ (self): BertSelfAttention(
41
+ (query): Linear(in_features=768, out_features=768, bias=True)
42
+ (key): Linear(in_features=768, out_features=768, bias=True)
43
+ (value): Linear(in_features=768, out_features=768, bias=True)
44
+ (dropout): Dropout(p=0.1, inplace=False)
45
+ )
46
+ (output): BertSelfOutput(
47
+ (dense): Linear(in_features=768, out_features=768, bias=True)
48
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
49
+ (dropout): Dropout(p=0.1, inplace=False)
50
+ )
51
+ )
52
+ (intermediate): BertIntermediate(
53
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
54
+ (intermediate_act_fn): GELUActivation()
55
+ )
56
+ (output): BertOutput(
57
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
58
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
59
+ (dropout): Dropout(p=0.1, inplace=False)
60
+ )
61
+ )
62
+ (2): BertLayer(
63
+ (attention): BertAttention(
64
+ (self): BertSelfAttention(
65
+ (query): Linear(in_features=768, out_features=768, bias=True)
66
+ (key): Linear(in_features=768, out_features=768, bias=True)
67
+ (value): Linear(in_features=768, out_features=768, bias=True)
68
+ (dropout): Dropout(p=0.1, inplace=False)
69
+ )
70
+ (output): BertSelfOutput(
71
+ (dense): Linear(in_features=768, out_features=768, bias=True)
72
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
73
+ (dropout): Dropout(p=0.1, inplace=False)
74
+ )
75
+ )
76
+ (intermediate): BertIntermediate(
77
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
78
+ (intermediate_act_fn): GELUActivation()
79
+ )
80
+ (output): BertOutput(
81
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
82
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
83
+ (dropout): Dropout(p=0.1, inplace=False)
84
+ )
85
+ )
86
+ (3): BertLayer(
87
+ (attention): BertAttention(
88
+ (self): BertSelfAttention(
89
+ (query): Linear(in_features=768, out_features=768, bias=True)
90
+ (key): Linear(in_features=768, out_features=768, bias=True)
91
+ (value): Linear(in_features=768, out_features=768, bias=True)
92
+ (dropout): Dropout(p=0.1, inplace=False)
93
+ )
94
+ (output): BertSelfOutput(
95
+ (dense): Linear(in_features=768, out_features=768, bias=True)
96
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
97
+ (dropout): Dropout(p=0.1, inplace=False)
98
+ )
99
+ )
100
+ (intermediate): BertIntermediate(
101
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
102
+ (intermediate_act_fn): GELUActivation()
103
+ )
104
+ (output): BertOutput(
105
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
106
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
107
+ (dropout): Dropout(p=0.1, inplace=False)
108
+ )
109
+ )
110
+ (4): BertLayer(
111
+ (attention): BertAttention(
112
+ (self): BertSelfAttention(
113
+ (query): Linear(in_features=768, out_features=768, bias=True)
114
+ (key): Linear(in_features=768, out_features=768, bias=True)
115
+ (value): Linear(in_features=768, out_features=768, bias=True)
116
+ (dropout): Dropout(p=0.1, inplace=False)
117
+ )
118
+ (output): BertSelfOutput(
119
+ (dense): Linear(in_features=768, out_features=768, bias=True)
120
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
121
+ (dropout): Dropout(p=0.1, inplace=False)
122
+ )
123
+ )
124
+ (intermediate): BertIntermediate(
125
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
126
+ (intermediate_act_fn): GELUActivation()
127
+ )
128
+ (output): BertOutput(
129
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
130
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
131
+ (dropout): Dropout(p=0.1, inplace=False)
132
+ )
133
+ )
134
+ (5): BertLayer(
135
+ (attention): BertAttention(
136
+ (self): BertSelfAttention(
137
+ (query): Linear(in_features=768, out_features=768, bias=True)
138
+ (key): Linear(in_features=768, out_features=768, bias=True)
139
+ (value): Linear(in_features=768, out_features=768, bias=True)
140
+ (dropout): Dropout(p=0.1, inplace=False)
141
+ )
142
+ (output): BertSelfOutput(
143
+ (dense): Linear(in_features=768, out_features=768, bias=True)
144
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
145
+ (dropout): Dropout(p=0.1, inplace=False)
146
+ )
147
+ )
148
+ (intermediate): BertIntermediate(
149
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
150
+ (intermediate_act_fn): GELUActivation()
151
+ )
152
+ (output): BertOutput(
153
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
154
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
155
+ (dropout): Dropout(p=0.1, inplace=False)
156
+ )
157
+ )
158
+ (6): BertLayer(
159
+ (attention): BertAttention(
160
+ (self): BertSelfAttention(
161
+ (query): Linear(in_features=768, out_features=768, bias=True)
162
+ (key): Linear(in_features=768, out_features=768, bias=True)
163
+ (value): Linear(in_features=768, out_features=768, bias=True)
164
+ (dropout): Dropout(p=0.1, inplace=False)
165
+ )
166
+ (output): BertSelfOutput(
167
+ (dense): Linear(in_features=768, out_features=768, bias=True)
168
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
169
+ (dropout): Dropout(p=0.1, inplace=False)
170
+ )
171
+ )
172
+ (intermediate): BertIntermediate(
173
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
174
+ (intermediate_act_fn): GELUActivation()
175
+ )
176
+ (output): BertOutput(
177
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
178
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
179
+ (dropout): Dropout(p=0.1, inplace=False)
180
+ )
181
+ )
182
+ (7): BertLayer(
183
+ (attention): BertAttention(
184
+ (self): BertSelfAttention(
185
+ (query): Linear(in_features=768, out_features=768, bias=True)
186
+ (key): Linear(in_features=768, out_features=768, bias=True)
187
+ (value): Linear(in_features=768, out_features=768, bias=True)
188
+ (dropout): Dropout(p=0.1, inplace=False)
189
+ )
190
+ (output): BertSelfOutput(
191
+ (dense): Linear(in_features=768, out_features=768, bias=True)
192
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
193
+ (dropout): Dropout(p=0.1, inplace=False)
194
+ )
195
+ )
196
+ (intermediate): BertIntermediate(
197
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
198
+ (intermediate_act_fn): GELUActivation()
199
+ )
200
+ (output): BertOutput(
201
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
202
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
203
+ (dropout): Dropout(p=0.1, inplace=False)
204
+ )
205
+ )
206
+ (8): BertLayer(
207
+ (attention): BertAttention(
208
+ (self): BertSelfAttention(
209
+ (query): Linear(in_features=768, out_features=768, bias=True)
210
+ (key): Linear(in_features=768, out_features=768, bias=True)
211
+ (value): Linear(in_features=768, out_features=768, bias=True)
212
+ (dropout): Dropout(p=0.1, inplace=False)
213
+ )
214
+ (output): BertSelfOutput(
215
+ (dense): Linear(in_features=768, out_features=768, bias=True)
216
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
217
+ (dropout): Dropout(p=0.1, inplace=False)
218
+ )
219
+ )
220
+ (intermediate): BertIntermediate(
221
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
222
+ (intermediate_act_fn): GELUActivation()
223
+ )
224
+ (output): BertOutput(
225
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
226
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
227
+ (dropout): Dropout(p=0.1, inplace=False)
228
+ )
229
+ )
230
+ (9): BertLayer(
231
+ (attention): BertAttention(
232
+ (self): BertSelfAttention(
233
+ (query): Linear(in_features=768, out_features=768, bias=True)
234
+ (key): Linear(in_features=768, out_features=768, bias=True)
235
+ (value): Linear(in_features=768, out_features=768, bias=True)
236
+ (dropout): Dropout(p=0.1, inplace=False)
237
+ )
238
+ (output): BertSelfOutput(
239
+ (dense): Linear(in_features=768, out_features=768, bias=True)
240
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
241
+ (dropout): Dropout(p=0.1, inplace=False)
242
+ )
243
+ )
244
+ (intermediate): BertIntermediate(
245
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
246
+ (intermediate_act_fn): GELUActivation()
247
+ )
248
+ (output): BertOutput(
249
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
250
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
251
+ (dropout): Dropout(p=0.1, inplace=False)
252
+ )
253
+ )
254
+ (10): BertLayer(
255
+ (attention): BertAttention(
256
+ (self): BertSelfAttention(
257
+ (query): Linear(in_features=768, out_features=768, bias=True)
258
+ (key): Linear(in_features=768, out_features=768, bias=True)
259
+ (value): Linear(in_features=768, out_features=768, bias=True)
260
+ (dropout): Dropout(p=0.1, inplace=False)
261
+ )
262
+ (output): BertSelfOutput(
263
+ (dense): Linear(in_features=768, out_features=768, bias=True)
264
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
265
+ (dropout): Dropout(p=0.1, inplace=False)
266
+ )
267
+ )
268
+ (intermediate): BertIntermediate(
269
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
270
+ (intermediate_act_fn): GELUActivation()
271
+ )
272
+ (output): BertOutput(
273
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
274
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
275
+ (dropout): Dropout(p=0.1, inplace=False)
276
+ )
277
+ )
278
+ (11): BertLayer(
279
+ (attention): BertAttention(
280
+ (self): BertSelfAttention(
281
+ (query): Linear(in_features=768, out_features=768, bias=True)
282
+ (key): Linear(in_features=768, out_features=768, bias=True)
283
+ (value): Linear(in_features=768, out_features=768, bias=True)
284
+ (dropout): Dropout(p=0.1, inplace=False)
285
+ )
286
+ (output): BertSelfOutput(
287
+ (dense): Linear(in_features=768, out_features=768, bias=True)
288
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
289
+ (dropout): Dropout(p=0.1, inplace=False)
290
+ )
291
+ )
292
+ (intermediate): BertIntermediate(
293
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
294
+ (intermediate_act_fn): GELUActivation()
295
+ )
296
+ (output): BertOutput(
297
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
298
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
299
+ (dropout): Dropout(p=0.1, inplace=False)
300
+ )
301
+ )
302
+ )
303
+ )
304
+ (pooler): BertPooler(
305
+ (dense): Linear(in_features=768, out_features=768, bias=True)
306
+ (activation): Tanh()
307
+ )
308
+ )
309
+ )
310
+ (locked_dropout): LockedDropout(p=0.5)
311
+ (linear): Linear(in_features=768, out_features=13, bias=True)
312
+ (loss_function): CrossEntropyLoss()
313
+ )"
314
+ 2023-10-24 14:31:22,493 ----------------------------------------------------------------------------------------------------
315
+ 2023-10-24 14:31:22,493 MultiCorpus: 7936 train + 992 dev + 992 test sentences
316
+ - NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /home/ubuntu/.flair/datasets/ner_icdar_europeana/fr
317
+ 2023-10-24 14:31:22,493 ----------------------------------------------------------------------------------------------------
318
+ 2023-10-24 14:31:22,493 Train: 7936 sentences
319
+ 2023-10-24 14:31:22,493 (train_with_dev=False, train_with_test=False)
320
+ 2023-10-24 14:31:22,493 ----------------------------------------------------------------------------------------------------
321
+ 2023-10-24 14:31:22,493 Training Params:
322
+ 2023-10-24 14:31:22,493 - learning_rate: "3e-05"
323
+ 2023-10-24 14:31:22,493 - mini_batch_size: "4"
324
+ 2023-10-24 14:31:22,493 - max_epochs: "10"
325
+ 2023-10-24 14:31:22,493 - shuffle: "True"
326
+ 2023-10-24 14:31:22,493 ----------------------------------------------------------------------------------------------------
327
+ 2023-10-24 14:31:22,493 Plugins:
328
+ 2023-10-24 14:31:22,493 - TensorboardLogger
329
+ 2023-10-24 14:31:22,493 - LinearScheduler | warmup_fraction: '0.1'
330
+ 2023-10-24 14:31:22,493 ----------------------------------------------------------------------------------------------------
331
+ 2023-10-24 14:31:22,493 Final evaluation on model from best epoch (best-model.pt)
332
+ 2023-10-24 14:31:22,493 - metric: "('micro avg', 'f1-score')"
333
+ 2023-10-24 14:31:22,493 ----------------------------------------------------------------------------------------------------
334
+ 2023-10-24 14:31:22,493 Computation:
335
+ 2023-10-24 14:31:22,493 - compute on device: cuda:0
336
+ 2023-10-24 14:31:22,494 - embedding storage: none
337
+ 2023-10-24 14:31:22,494 ----------------------------------------------------------------------------------------------------
338
+ 2023-10-24 14:31:22,494 Model training base path: "hmbench-icdar/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
339
+ 2023-10-24 14:31:22,494 ----------------------------------------------------------------------------------------------------
340
+ 2023-10-24 14:31:22,494 ----------------------------------------------------------------------------------------------------
341
+ 2023-10-24 14:31:22,494 Logging anything other than scalars to TensorBoard is currently not supported.
342
+ 2023-10-24 14:31:34,835 epoch 1 - iter 198/1984 - loss 1.64021175 - time (sec): 12.34 - samples/sec: 1274.19 - lr: 0.000003 - momentum: 0.000000
343
+ 2023-10-24 14:31:46,520 epoch 1 - iter 396/1984 - loss 0.98613041 - time (sec): 24.03 - samples/sec: 1291.18 - lr: 0.000006 - momentum: 0.000000
344
+ 2023-10-24 14:31:58,355 epoch 1 - iter 594/1984 - loss 0.72657281 - time (sec): 35.86 - samples/sec: 1322.15 - lr: 0.000009 - momentum: 0.000000
345
+ 2023-10-24 14:32:10,143 epoch 1 - iter 792/1984 - loss 0.58763880 - time (sec): 47.65 - samples/sec: 1329.63 - lr: 0.000012 - momentum: 0.000000
346
+ 2023-10-24 14:32:22,176 epoch 1 - iter 990/1984 - loss 0.49473459 - time (sec): 59.68 - samples/sec: 1350.76 - lr: 0.000015 - momentum: 0.000000
347
+ 2023-10-24 14:32:34,199 epoch 1 - iter 1188/1984 - loss 0.43574145 - time (sec): 71.70 - samples/sec: 1353.56 - lr: 0.000018 - momentum: 0.000000
348
+ 2023-10-24 14:32:46,538 epoch 1 - iter 1386/1984 - loss 0.39286382 - time (sec): 84.04 - samples/sec: 1350.90 - lr: 0.000021 - momentum: 0.000000
349
+ 2023-10-24 14:32:58,675 epoch 1 - iter 1584/1984 - loss 0.36073738 - time (sec): 96.18 - samples/sec: 1358.30 - lr: 0.000024 - momentum: 0.000000
350
+ 2023-10-24 14:33:10,706 epoch 1 - iter 1782/1984 - loss 0.33631924 - time (sec): 108.21 - samples/sec: 1360.63 - lr: 0.000027 - momentum: 0.000000
351
+ 2023-10-24 14:33:22,689 epoch 1 - iter 1980/1984 - loss 0.31569591 - time (sec): 120.19 - samples/sec: 1361.86 - lr: 0.000030 - momentum: 0.000000
352
+ 2023-10-24 14:33:22,927 ----------------------------------------------------------------------------------------------------
353
+ 2023-10-24 14:33:22,927 EPOCH 1 done: loss 0.3154 - lr: 0.000030
354
+ 2023-10-24 14:33:25,939 DEV : loss 0.09478097409009933 - f1-score (micro avg) 0.7144
355
+ 2023-10-24 14:33:25,953 saving best model
356
+ 2023-10-24 14:33:26,514 ----------------------------------------------------------------------------------------------------
357
+ 2023-10-24 14:33:38,596 epoch 2 - iter 198/1984 - loss 0.11789057 - time (sec): 12.08 - samples/sec: 1412.70 - lr: 0.000030 - momentum: 0.000000
358
+ 2023-10-24 14:33:50,643 epoch 2 - iter 396/1984 - loss 0.12637511 - time (sec): 24.13 - samples/sec: 1385.10 - lr: 0.000029 - momentum: 0.000000
359
+ 2023-10-24 14:34:02,939 epoch 2 - iter 594/1984 - loss 0.12285469 - time (sec): 36.42 - samples/sec: 1395.18 - lr: 0.000029 - momentum: 0.000000
360
+ 2023-10-24 14:34:14,859 epoch 2 - iter 792/1984 - loss 0.11931934 - time (sec): 48.34 - samples/sec: 1383.19 - lr: 0.000029 - momentum: 0.000000
361
+ 2023-10-24 14:34:26,987 epoch 2 - iter 990/1984 - loss 0.11648264 - time (sec): 60.47 - samples/sec: 1377.44 - lr: 0.000028 - momentum: 0.000000
362
+ 2023-10-24 14:34:39,006 epoch 2 - iter 1188/1984 - loss 0.11833590 - time (sec): 72.49 - samples/sec: 1358.53 - lr: 0.000028 - momentum: 0.000000
363
+ 2023-10-24 14:34:50,954 epoch 2 - iter 1386/1984 - loss 0.11886180 - time (sec): 84.44 - samples/sec: 1351.97 - lr: 0.000028 - momentum: 0.000000
364
+ 2023-10-24 14:35:03,035 epoch 2 - iter 1584/1984 - loss 0.11758701 - time (sec): 96.52 - samples/sec: 1350.28 - lr: 0.000027 - momentum: 0.000000
365
+ 2023-10-24 14:35:15,270 epoch 2 - iter 1782/1984 - loss 0.11634270 - time (sec): 108.76 - samples/sec: 1353.72 - lr: 0.000027 - momentum: 0.000000
366
+ 2023-10-24 14:35:27,311 epoch 2 - iter 1980/1984 - loss 0.11438214 - time (sec): 120.80 - samples/sec: 1354.91 - lr: 0.000027 - momentum: 0.000000
367
+ 2023-10-24 14:35:27,547 ----------------------------------------------------------------------------------------------------
368
+ 2023-10-24 14:35:27,547 EPOCH 2 done: loss 0.1142 - lr: 0.000027
369
+ 2023-10-24 14:35:30,641 DEV : loss 0.10835588723421097 - f1-score (micro avg) 0.7283
370
+ 2023-10-24 14:35:30,656 saving best model
371
+ 2023-10-24 14:35:31,361 ----------------------------------------------------------------------------------------------------
372
+ 2023-10-24 14:35:43,401 epoch 3 - iter 198/1984 - loss 0.07469050 - time (sec): 12.04 - samples/sec: 1319.96 - lr: 0.000026 - momentum: 0.000000
373
+ 2023-10-24 14:35:55,496 epoch 3 - iter 396/1984 - loss 0.07599030 - time (sec): 24.13 - samples/sec: 1364.30 - lr: 0.000026 - momentum: 0.000000
374
+ 2023-10-24 14:36:07,686 epoch 3 - iter 594/1984 - loss 0.07603147 - time (sec): 36.32 - samples/sec: 1368.90 - lr: 0.000026 - momentum: 0.000000
375
+ 2023-10-24 14:36:19,765 epoch 3 - iter 792/1984 - loss 0.08234754 - time (sec): 48.40 - samples/sec: 1349.84 - lr: 0.000025 - momentum: 0.000000
376
+ 2023-10-24 14:36:31,750 epoch 3 - iter 990/1984 - loss 0.08578592 - time (sec): 60.39 - samples/sec: 1343.02 - lr: 0.000025 - momentum: 0.000000
377
+ 2023-10-24 14:36:44,036 epoch 3 - iter 1188/1984 - loss 0.08858337 - time (sec): 72.67 - samples/sec: 1342.52 - lr: 0.000025 - momentum: 0.000000
378
+ 2023-10-24 14:36:55,947 epoch 3 - iter 1386/1984 - loss 0.09044162 - time (sec): 84.59 - samples/sec: 1337.62 - lr: 0.000024 - momentum: 0.000000
379
+ 2023-10-24 14:37:08,165 epoch 3 - iter 1584/1984 - loss 0.08919442 - time (sec): 96.80 - samples/sec: 1343.55 - lr: 0.000024 - momentum: 0.000000
380
+ 2023-10-24 14:37:20,537 epoch 3 - iter 1782/1984 - loss 0.08855403 - time (sec): 109.18 - samples/sec: 1338.97 - lr: 0.000024 - momentum: 0.000000
381
+ 2023-10-24 14:37:32,948 epoch 3 - iter 1980/1984 - loss 0.08691521 - time (sec): 121.59 - samples/sec: 1345.37 - lr: 0.000023 - momentum: 0.000000
382
+ 2023-10-24 14:37:33,202 ----------------------------------------------------------------------------------------------------
383
+ 2023-10-24 14:37:33,202 EPOCH 3 done: loss 0.0871 - lr: 0.000023
384
+ 2023-10-24 14:37:36,304 DEV : loss 0.13157667219638824 - f1-score (micro avg) 0.7364
385
+ 2023-10-24 14:37:36,319 saving best model
386
+ 2023-10-24 14:37:36,975 ----------------------------------------------------------------------------------------------------
387
+ 2023-10-24 14:37:49,088 epoch 4 - iter 198/1984 - loss 0.06040276 - time (sec): 12.11 - samples/sec: 1376.76 - lr: 0.000023 - momentum: 0.000000
388
+ 2023-10-24 14:38:01,271 epoch 4 - iter 396/1984 - loss 0.05539813 - time (sec): 24.29 - samples/sec: 1354.61 - lr: 0.000023 - momentum: 0.000000
389
+ 2023-10-24 14:38:13,104 epoch 4 - iter 594/1984 - loss 0.05490719 - time (sec): 36.13 - samples/sec: 1330.15 - lr: 0.000022 - momentum: 0.000000
390
+ 2023-10-24 14:38:25,121 epoch 4 - iter 792/1984 - loss 0.06133338 - time (sec): 48.14 - samples/sec: 1335.44 - lr: 0.000022 - momentum: 0.000000
391
+ 2023-10-24 14:38:37,262 epoch 4 - iter 990/1984 - loss 0.06105312 - time (sec): 60.29 - samples/sec: 1344.03 - lr: 0.000022 - momentum: 0.000000
392
+ 2023-10-24 14:38:49,881 epoch 4 - iter 1188/1984 - loss 0.06152759 - time (sec): 72.90 - samples/sec: 1362.84 - lr: 0.000021 - momentum: 0.000000
393
+ 2023-10-24 14:39:01,795 epoch 4 - iter 1386/1984 - loss 0.06044022 - time (sec): 84.82 - samples/sec: 1358.01 - lr: 0.000021 - momentum: 0.000000
394
+ 2023-10-24 14:39:13,983 epoch 4 - iter 1584/1984 - loss 0.06312833 - time (sec): 97.01 - samples/sec: 1358.54 - lr: 0.000021 - momentum: 0.000000
395
+ 2023-10-24 14:39:26,132 epoch 4 - iter 1782/1984 - loss 0.06372263 - time (sec): 109.16 - samples/sec: 1355.91 - lr: 0.000020 - momentum: 0.000000
396
+ 2023-10-24 14:39:38,115 epoch 4 - iter 1980/1984 - loss 0.06435156 - time (sec): 121.14 - samples/sec: 1351.58 - lr: 0.000020 - momentum: 0.000000
397
+ 2023-10-24 14:39:38,347 ----------------------------------------------------------------------------------------------------
398
+ 2023-10-24 14:39:38,347 EPOCH 4 done: loss 0.0645 - lr: 0.000020
399
+ 2023-10-24 14:39:41,437 DEV : loss 0.19480304419994354 - f1-score (micro avg) 0.74
400
+ 2023-10-24 14:39:41,451 saving best model
401
+ 2023-10-24 14:39:42,159 ----------------------------------------------------------------------------------------------------
402
+ 2023-10-24 14:39:54,466 epoch 5 - iter 198/1984 - loss 0.05026390 - time (sec): 12.31 - samples/sec: 1372.20 - lr: 0.000020 - momentum: 0.000000
403
+ 2023-10-24 14:40:06,513 epoch 5 - iter 396/1984 - loss 0.04926928 - time (sec): 24.35 - samples/sec: 1349.95 - lr: 0.000019 - momentum: 0.000000
404
+ 2023-10-24 14:40:18,489 epoch 5 - iter 594/1984 - loss 0.04643126 - time (sec): 36.33 - samples/sec: 1343.01 - lr: 0.000019 - momentum: 0.000000
405
+ 2023-10-24 14:40:30,764 epoch 5 - iter 792/1984 - loss 0.04774956 - time (sec): 48.60 - samples/sec: 1360.83 - lr: 0.000019 - momentum: 0.000000
406
+ 2023-10-24 14:40:42,974 epoch 5 - iter 990/1984 - loss 0.04725796 - time (sec): 60.81 - samples/sec: 1339.73 - lr: 0.000018 - momentum: 0.000000
407
+ 2023-10-24 14:40:55,011 epoch 5 - iter 1188/1984 - loss 0.04580115 - time (sec): 72.85 - samples/sec: 1341.47 - lr: 0.000018 - momentum: 0.000000
408
+ 2023-10-24 14:41:07,111 epoch 5 - iter 1386/1984 - loss 0.04453556 - time (sec): 84.95 - samples/sec: 1344.63 - lr: 0.000018 - momentum: 0.000000
409
+ 2023-10-24 14:41:19,265 epoch 5 - iter 1584/1984 - loss 0.04431866 - time (sec): 97.10 - samples/sec: 1350.72 - lr: 0.000017 - momentum: 0.000000
410
+ 2023-10-24 14:41:31,590 epoch 5 - iter 1782/1984 - loss 0.04476987 - time (sec): 109.43 - samples/sec: 1353.50 - lr: 0.000017 - momentum: 0.000000
411
+ 2023-10-24 14:41:43,646 epoch 5 - iter 1980/1984 - loss 0.04463271 - time (sec): 121.49 - samples/sec: 1348.16 - lr: 0.000017 - momentum: 0.000000
412
+ 2023-10-24 14:41:43,874 ----------------------------------------------------------------------------------------------------
413
+ 2023-10-24 14:41:43,874 EPOCH 5 done: loss 0.0447 - lr: 0.000017
414
+ 2023-10-24 14:41:46,984 DEV : loss 0.18662182986736298 - f1-score (micro avg) 0.7517
415
+ 2023-10-24 14:41:46,999 saving best model
416
+ 2023-10-24 14:41:47,695 ----------------------------------------------------------------------------------------------------
417
+ 2023-10-24 14:41:59,786 epoch 6 - iter 198/1984 - loss 0.02967304 - time (sec): 12.09 - samples/sec: 1328.35 - lr: 0.000016 - momentum: 0.000000
418
+ 2023-10-24 14:42:11,835 epoch 6 - iter 396/1984 - loss 0.02628259 - time (sec): 24.14 - samples/sec: 1339.14 - lr: 0.000016 - momentum: 0.000000
419
+ 2023-10-24 14:42:24,130 epoch 6 - iter 594/1984 - loss 0.03178036 - time (sec): 36.43 - samples/sec: 1353.58 - lr: 0.000016 - momentum: 0.000000
420
+ 2023-10-24 14:42:36,229 epoch 6 - iter 792/1984 - loss 0.03031091 - time (sec): 48.53 - samples/sec: 1343.45 - lr: 0.000015 - momentum: 0.000000
421
+ 2023-10-24 14:42:48,393 epoch 6 - iter 990/1984 - loss 0.03339443 - time (sec): 60.70 - samples/sec: 1357.58 - lr: 0.000015 - momentum: 0.000000
422
+ 2023-10-24 14:43:00,431 epoch 6 - iter 1188/1984 - loss 0.03520672 - time (sec): 72.73 - samples/sec: 1355.98 - lr: 0.000015 - momentum: 0.000000
423
+ 2023-10-24 14:43:12,544 epoch 6 - iter 1386/1984 - loss 0.03507182 - time (sec): 84.85 - samples/sec: 1355.23 - lr: 0.000014 - momentum: 0.000000
424
+ 2023-10-24 14:43:24,608 epoch 6 - iter 1584/1984 - loss 0.03513777 - time (sec): 96.91 - samples/sec: 1351.09 - lr: 0.000014 - momentum: 0.000000
425
+ 2023-10-24 14:43:36,845 epoch 6 - iter 1782/1984 - loss 0.03572007 - time (sec): 109.15 - samples/sec: 1347.12 - lr: 0.000014 - momentum: 0.000000
426
+ 2023-10-24 14:43:49,108 epoch 6 - iter 1980/1984 - loss 0.03503102 - time (sec): 121.41 - samples/sec: 1349.11 - lr: 0.000013 - momentum: 0.000000
427
+ 2023-10-24 14:43:49,334 ----------------------------------------------------------------------------------------------------
428
+ 2023-10-24 14:43:49,334 EPOCH 6 done: loss 0.0350 - lr: 0.000013
429
+ 2023-10-24 14:43:52,429 DEV : loss 0.21698078513145447 - f1-score (micro avg) 0.7558
430
+ 2023-10-24 14:43:52,443 saving best model
431
+ 2023-10-24 14:43:53,142 ----------------------------------------------------------------------------------------------------
432
+ 2023-10-24 14:44:05,593 epoch 7 - iter 198/1984 - loss 0.02040662 - time (sec): 12.45 - samples/sec: 1367.24 - lr: 0.000013 - momentum: 0.000000
433
+ 2023-10-24 14:44:17,602 epoch 7 - iter 396/1984 - loss 0.02479863 - time (sec): 24.46 - samples/sec: 1339.10 - lr: 0.000013 - momentum: 0.000000
434
+ 2023-10-24 14:44:29,624 epoch 7 - iter 594/1984 - loss 0.02452452 - time (sec): 36.48 - samples/sec: 1320.81 - lr: 0.000012 - momentum: 0.000000
435
+ 2023-10-24 14:44:41,592 epoch 7 - iter 792/1984 - loss 0.02504432 - time (sec): 48.45 - samples/sec: 1317.92 - lr: 0.000012 - momentum: 0.000000
436
+ 2023-10-24 14:44:53,589 epoch 7 - iter 990/1984 - loss 0.02388568 - time (sec): 60.45 - samples/sec: 1311.14 - lr: 0.000012 - momentum: 0.000000
437
+ 2023-10-24 14:45:05,715 epoch 7 - iter 1188/1984 - loss 0.02418482 - time (sec): 72.57 - samples/sec: 1325.54 - lr: 0.000011 - momentum: 0.000000
438
+ 2023-10-24 14:45:17,830 epoch 7 - iter 1386/1984 - loss 0.02431743 - time (sec): 84.69 - samples/sec: 1329.80 - lr: 0.000011 - momentum: 0.000000
439
+ 2023-10-24 14:45:29,872 epoch 7 - iter 1584/1984 - loss 0.02469299 - time (sec): 96.73 - samples/sec: 1328.05 - lr: 0.000011 - momentum: 0.000000
440
+ 2023-10-24 14:45:42,461 epoch 7 - iter 1782/1984 - loss 0.02487510 - time (sec): 109.32 - samples/sec: 1339.43 - lr: 0.000010 - momentum: 0.000000
441
+ 2023-10-24 14:45:54,623 epoch 7 - iter 1980/1984 - loss 0.02496138 - time (sec): 121.48 - samples/sec: 1348.11 - lr: 0.000010 - momentum: 0.000000
442
+ 2023-10-24 14:45:54,851 ----------------------------------------------------------------------------------------------------
443
+ 2023-10-24 14:45:54,851 EPOCH 7 done: loss 0.0249 - lr: 0.000010
444
+ 2023-10-24 14:45:57,960 DEV : loss 0.22160428762435913 - f1-score (micro avg) 0.7497
445
+ 2023-10-24 14:45:57,975 ----------------------------------------------------------------------------------------------------
446
+ 2023-10-24 14:46:10,073 epoch 8 - iter 198/1984 - loss 0.01209168 - time (sec): 12.10 - samples/sec: 1363.85 - lr: 0.000010 - momentum: 0.000000
447
+ 2023-10-24 14:46:21,985 epoch 8 - iter 396/1984 - loss 0.01639127 - time (sec): 24.01 - samples/sec: 1311.69 - lr: 0.000009 - momentum: 0.000000
448
+ 2023-10-24 14:46:34,041 epoch 8 - iter 594/1984 - loss 0.01756574 - time (sec): 36.07 - samples/sec: 1317.22 - lr: 0.000009 - momentum: 0.000000
449
+ 2023-10-24 14:46:46,342 epoch 8 - iter 792/1984 - loss 0.01608469 - time (sec): 48.37 - samples/sec: 1327.24 - lr: 0.000009 - momentum: 0.000000
450
+ 2023-10-24 14:46:58,745 epoch 8 - iter 990/1984 - loss 0.01710028 - time (sec): 60.77 - samples/sec: 1342.92 - lr: 0.000008 - momentum: 0.000000
451
+ 2023-10-24 14:47:10,850 epoch 8 - iter 1188/1984 - loss 0.01724256 - time (sec): 72.87 - samples/sec: 1342.88 - lr: 0.000008 - momentum: 0.000000
452
+ 2023-10-24 14:47:23,213 epoch 8 - iter 1386/1984 - loss 0.01610726 - time (sec): 85.24 - samples/sec: 1359.59 - lr: 0.000008 - momentum: 0.000000
453
+ 2023-10-24 14:47:35,153 epoch 8 - iter 1584/1984 - loss 0.01637683 - time (sec): 97.18 - samples/sec: 1348.61 - lr: 0.000007 - momentum: 0.000000
454
+ 2023-10-24 14:47:47,301 epoch 8 - iter 1782/1984 - loss 0.01694080 - time (sec): 109.33 - samples/sec: 1350.21 - lr: 0.000007 - momentum: 0.000000
455
+ 2023-10-24 14:47:59,271 epoch 8 - iter 1980/1984 - loss 0.01660634 - time (sec): 121.30 - samples/sec: 1348.03 - lr: 0.000007 - momentum: 0.000000
456
+ 2023-10-24 14:47:59,545 ----------------------------------------------------------------------------------------------------
457
+ 2023-10-24 14:47:59,545 EPOCH 8 done: loss 0.0166 - lr: 0.000007
458
+ 2023-10-24 14:48:02,962 DEV : loss 0.23455536365509033 - f1-score (micro avg) 0.7546
459
+ 2023-10-24 14:48:02,977 ----------------------------------------------------------------------------------------------------
460
+ 2023-10-24 14:48:15,195 epoch 9 - iter 198/1984 - loss 0.00905006 - time (sec): 12.22 - samples/sec: 1411.26 - lr: 0.000006 - momentum: 0.000000
461
+ 2023-10-24 14:48:27,508 epoch 9 - iter 396/1984 - loss 0.00911175 - time (sec): 24.53 - samples/sec: 1385.96 - lr: 0.000006 - momentum: 0.000000
462
+ 2023-10-24 14:48:39,556 epoch 9 - iter 594/1984 - loss 0.01007165 - time (sec): 36.58 - samples/sec: 1379.07 - lr: 0.000006 - momentum: 0.000000
463
+ 2023-10-24 14:48:51,753 epoch 9 - iter 792/1984 - loss 0.01181057 - time (sec): 48.77 - samples/sec: 1370.89 - lr: 0.000005 - momentum: 0.000000
464
+ 2023-10-24 14:49:03,817 epoch 9 - iter 990/1984 - loss 0.01269583 - time (sec): 60.84 - samples/sec: 1365.37 - lr: 0.000005 - momentum: 0.000000
465
+ 2023-10-24 14:49:16,171 epoch 9 - iter 1188/1984 - loss 0.01342504 - time (sec): 73.19 - samples/sec: 1372.60 - lr: 0.000005 - momentum: 0.000000
466
+ 2023-10-24 14:49:28,166 epoch 9 - iter 1386/1984 - loss 0.01277923 - time (sec): 85.19 - samples/sec: 1363.74 - lr: 0.000004 - momentum: 0.000000
467
+ 2023-10-24 14:49:40,133 epoch 9 - iter 1584/1984 - loss 0.01264028 - time (sec): 97.15 - samples/sec: 1356.06 - lr: 0.000004 - momentum: 0.000000
468
+ 2023-10-24 14:49:52,112 epoch 9 - iter 1782/1984 - loss 0.01278804 - time (sec): 109.13 - samples/sec: 1351.36 - lr: 0.000004 - momentum: 0.000000
469
+ 2023-10-24 14:50:04,183 epoch 9 - iter 1980/1984 - loss 0.01271379 - time (sec): 121.20 - samples/sec: 1350.44 - lr: 0.000003 - momentum: 0.000000
470
+ 2023-10-24 14:50:04,438 ----------------------------------------------------------------------------------------------------
471
+ 2023-10-24 14:50:04,438 EPOCH 9 done: loss 0.0127 - lr: 0.000003
472
+ 2023-10-24 14:50:07,546 DEV : loss 0.24538028240203857 - f1-score (micro avg) 0.7562
473
+ 2023-10-24 14:50:07,561 saving best model
474
+ 2023-10-24 14:50:08,407 ----------------------------------------------------------------------------------------------------
475
+ 2023-10-24 14:50:20,305 epoch 10 - iter 198/1984 - loss 0.01102981 - time (sec): 11.90 - samples/sec: 1336.30 - lr: 0.000003 - momentum: 0.000000
476
+ 2023-10-24 14:50:32,270 epoch 10 - iter 396/1984 - loss 0.00908295 - time (sec): 23.86 - samples/sec: 1337.17 - lr: 0.000003 - momentum: 0.000000
477
+ 2023-10-24 14:50:44,607 epoch 10 - iter 594/1984 - loss 0.00884709 - time (sec): 36.20 - samples/sec: 1365.66 - lr: 0.000002 - momentum: 0.000000
478
+ 2023-10-24 14:50:56,745 epoch 10 - iter 792/1984 - loss 0.00853659 - time (sec): 48.34 - samples/sec: 1358.97 - lr: 0.000002 - momentum: 0.000000
479
+ 2023-10-24 14:51:08,846 epoch 10 - iter 990/1984 - loss 0.00836767 - time (sec): 60.44 - samples/sec: 1359.78 - lr: 0.000002 - momentum: 0.000000
480
+ 2023-10-24 14:51:20,973 epoch 10 - iter 1188/1984 - loss 0.00884835 - time (sec): 72.56 - samples/sec: 1363.32 - lr: 0.000001 - momentum: 0.000000
481
+ 2023-10-24 14:51:33,018 epoch 10 - iter 1386/1984 - loss 0.00855372 - time (sec): 84.61 - samples/sec: 1354.25 - lr: 0.000001 - momentum: 0.000000
482
+ 2023-10-24 14:51:45,186 epoch 10 - iter 1584/1984 - loss 0.00850122 - time (sec): 96.78 - samples/sec: 1351.56 - lr: 0.000001 - momentum: 0.000000
483
+ 2023-10-24 14:51:57,670 epoch 10 - iter 1782/1984 - loss 0.00808050 - time (sec): 109.26 - samples/sec: 1347.29 - lr: 0.000000 - momentum: 0.000000
484
+ 2023-10-24 14:52:09,831 epoch 10 - iter 1980/1984 - loss 0.00833862 - time (sec): 121.42 - samples/sec: 1346.80 - lr: 0.000000 - momentum: 0.000000
485
+ 2023-10-24 14:52:10,101 ----------------------------------------------------------------------------------------------------
486
+ 2023-10-24 14:52:10,101 EPOCH 10 done: loss 0.0083 - lr: 0.000000
487
+ 2023-10-24 14:52:13,220 DEV : loss 0.24850758910179138 - f1-score (micro avg) 0.7547
488
+ 2023-10-24 14:52:13,792 ----------------------------------------------------------------------------------------------------
489
+ 2023-10-24 14:52:13,793 Loading model from best epoch ...
490
+ 2023-10-24 14:52:15,747 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
491
+ 2023-10-24 14:52:18,813
492
+ Results:
493
+ - F-score (micro) 0.7945
494
+ - F-score (macro) 0.7119
495
+ - Accuracy 0.6818
496
+
497
+ By class:
498
+ precision recall f1-score support
499
+
500
+ LOC 0.8256 0.8748 0.8495 655
501
+ PER 0.7366 0.8027 0.7682 223
502
+ ORG 0.5979 0.4567 0.5179 127
503
+
504
+ micro avg 0.7834 0.8060 0.7945 1005
505
+ macro avg 0.7201 0.7114 0.7119 1005
506
+ weighted avg 0.7771 0.8060 0.7896 1005
507
+
508
+ 2023-10-24 14:52:18,814 ----------------------------------------------------------------------------------------------------