Upload ./training.log with huggingface_hub
Browse files- training.log +505 -0
training.log
ADDED
@@ -0,0 +1,505 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-24 10:48:14,850 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-24 10:48:14,851 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-24 10:48:14,852 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-24 10:48:14,852 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
|
316 |
+
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
|
317 |
+
2023-10-24 10:48:14,852 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-24 10:48:14,852 Train: 5901 sentences
|
319 |
+
2023-10-24 10:48:14,852 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-24 10:48:14,852 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-24 10:48:14,852 Training Params:
|
322 |
+
2023-10-24 10:48:14,852 - learning_rate: "5e-05"
|
323 |
+
2023-10-24 10:48:14,852 - mini_batch_size: "4"
|
324 |
+
2023-10-24 10:48:14,852 - max_epochs: "10"
|
325 |
+
2023-10-24 10:48:14,852 - shuffle: "True"
|
326 |
+
2023-10-24 10:48:14,852 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-24 10:48:14,852 Plugins:
|
328 |
+
2023-10-24 10:48:14,852 - TensorboardLogger
|
329 |
+
2023-10-24 10:48:14,852 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-24 10:48:14,852 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-24 10:48:14,852 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-24 10:48:14,853 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-24 10:48:14,853 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-24 10:48:14,853 Computation:
|
335 |
+
2023-10-24 10:48:14,853 - compute on device: cuda:0
|
336 |
+
2023-10-24 10:48:14,853 - embedding storage: none
|
337 |
+
2023-10-24 10:48:14,853 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-24 10:48:14,853 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3"
|
339 |
+
2023-10-24 10:48:14,853 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-24 10:48:14,853 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-24 10:48:14,853 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-24 10:48:24,098 epoch 1 - iter 147/1476 - loss 1.65586929 - time (sec): 9.24 - samples/sec: 1730.95 - lr: 0.000005 - momentum: 0.000000
|
343 |
+
2023-10-24 10:48:33,391 epoch 1 - iter 294/1476 - loss 1.07991837 - time (sec): 18.54 - samples/sec: 1711.24 - lr: 0.000010 - momentum: 0.000000
|
344 |
+
2023-10-24 10:48:42,499 epoch 1 - iter 441/1476 - loss 0.87315512 - time (sec): 27.65 - samples/sec: 1663.26 - lr: 0.000015 - momentum: 0.000000
|
345 |
+
2023-10-24 10:48:52,399 epoch 1 - iter 588/1476 - loss 0.70884012 - time (sec): 37.55 - samples/sec: 1719.32 - lr: 0.000020 - momentum: 0.000000
|
346 |
+
2023-10-24 10:49:02,834 epoch 1 - iter 735/1476 - loss 0.59023179 - time (sec): 47.98 - samples/sec: 1759.57 - lr: 0.000025 - momentum: 0.000000
|
347 |
+
2023-10-24 10:49:12,304 epoch 1 - iter 882/1476 - loss 0.52815123 - time (sec): 57.45 - samples/sec: 1756.99 - lr: 0.000030 - momentum: 0.000000
|
348 |
+
2023-10-24 10:49:21,617 epoch 1 - iter 1029/1476 - loss 0.48116891 - time (sec): 66.76 - samples/sec: 1748.66 - lr: 0.000035 - momentum: 0.000000
|
349 |
+
2023-10-24 10:49:31,462 epoch 1 - iter 1176/1476 - loss 0.44141868 - time (sec): 76.61 - samples/sec: 1746.77 - lr: 0.000040 - momentum: 0.000000
|
350 |
+
2023-10-24 10:49:40,743 epoch 1 - iter 1323/1476 - loss 0.41530887 - time (sec): 85.89 - samples/sec: 1742.31 - lr: 0.000045 - momentum: 0.000000
|
351 |
+
2023-10-24 10:49:50,281 epoch 1 - iter 1470/1476 - loss 0.38978126 - time (sec): 95.43 - samples/sec: 1738.88 - lr: 0.000050 - momentum: 0.000000
|
352 |
+
2023-10-24 10:49:50,628 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-24 10:49:50,629 EPOCH 1 done: loss 0.3891 - lr: 0.000050
|
354 |
+
2023-10-24 10:49:56,936 DEV : loss 0.13457921147346497 - f1-score (micro avg) 0.7234
|
355 |
+
2023-10-24 10:49:56,958 saving best model
|
356 |
+
2023-10-24 10:49:57,516 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-24 10:50:07,080 epoch 2 - iter 147/1476 - loss 0.12059972 - time (sec): 9.56 - samples/sec: 1765.14 - lr: 0.000049 - momentum: 0.000000
|
358 |
+
2023-10-24 10:50:16,285 epoch 2 - iter 294/1476 - loss 0.13797220 - time (sec): 18.77 - samples/sec: 1717.67 - lr: 0.000049 - momentum: 0.000000
|
359 |
+
2023-10-24 10:50:25,463 epoch 2 - iter 441/1476 - loss 0.14905127 - time (sec): 27.95 - samples/sec: 1679.87 - lr: 0.000048 - momentum: 0.000000
|
360 |
+
2023-10-24 10:50:35,219 epoch 2 - iter 588/1476 - loss 0.14142829 - time (sec): 37.70 - samples/sec: 1704.17 - lr: 0.000048 - momentum: 0.000000
|
361 |
+
2023-10-24 10:50:44,511 epoch 2 - iter 735/1476 - loss 0.13962946 - time (sec): 46.99 - samples/sec: 1694.23 - lr: 0.000047 - momentum: 0.000000
|
362 |
+
2023-10-24 10:50:54,152 epoch 2 - iter 882/1476 - loss 0.13959635 - time (sec): 56.63 - samples/sec: 1704.74 - lr: 0.000047 - momentum: 0.000000
|
363 |
+
2023-10-24 10:51:03,232 epoch 2 - iter 1029/1476 - loss 0.14077252 - time (sec): 65.71 - samples/sec: 1691.49 - lr: 0.000046 - momentum: 0.000000
|
364 |
+
2023-10-24 10:51:13,264 epoch 2 - iter 1176/1476 - loss 0.13763429 - time (sec): 75.75 - samples/sec: 1725.25 - lr: 0.000046 - momentum: 0.000000
|
365 |
+
2023-10-24 10:51:23,146 epoch 2 - iter 1323/1476 - loss 0.13938057 - time (sec): 85.63 - samples/sec: 1726.60 - lr: 0.000045 - momentum: 0.000000
|
366 |
+
2023-10-24 10:51:33,145 epoch 2 - iter 1470/1476 - loss 0.13778830 - time (sec): 95.63 - samples/sec: 1735.50 - lr: 0.000044 - momentum: 0.000000
|
367 |
+
2023-10-24 10:51:33,492 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-24 10:51:33,492 EPOCH 2 done: loss 0.1379 - lr: 0.000044
|
369 |
+
2023-10-24 10:51:42,008 DEV : loss 0.14209164679050446 - f1-score (micro avg) 0.7784
|
370 |
+
2023-10-24 10:51:42,029 saving best model
|
371 |
+
2023-10-24 10:51:42,735 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-24 10:51:52,069 epoch 3 - iter 147/1476 - loss 0.08832162 - time (sec): 9.33 - samples/sec: 1634.07 - lr: 0.000044 - momentum: 0.000000
|
373 |
+
2023-10-24 10:52:02,054 epoch 3 - iter 294/1476 - loss 0.08724963 - time (sec): 19.32 - samples/sec: 1723.32 - lr: 0.000043 - momentum: 0.000000
|
374 |
+
2023-10-24 10:52:11,502 epoch 3 - iter 441/1476 - loss 0.08766214 - time (sec): 28.77 - samples/sec: 1709.11 - lr: 0.000043 - momentum: 0.000000
|
375 |
+
2023-10-24 10:52:21,316 epoch 3 - iter 588/1476 - loss 0.08283332 - time (sec): 38.58 - samples/sec: 1746.55 - lr: 0.000042 - momentum: 0.000000
|
376 |
+
2023-10-24 10:52:30,589 epoch 3 - iter 735/1476 - loss 0.08143414 - time (sec): 47.85 - samples/sec: 1727.76 - lr: 0.000042 - momentum: 0.000000
|
377 |
+
2023-10-24 10:52:40,282 epoch 3 - iter 882/1476 - loss 0.08342790 - time (sec): 57.55 - samples/sec: 1738.12 - lr: 0.000041 - momentum: 0.000000
|
378 |
+
2023-10-24 10:52:49,830 epoch 3 - iter 1029/1476 - loss 0.08223349 - time (sec): 67.09 - samples/sec: 1733.72 - lr: 0.000041 - momentum: 0.000000
|
379 |
+
2023-10-24 10:52:59,223 epoch 3 - iter 1176/1476 - loss 0.08468750 - time (sec): 76.49 - samples/sec: 1729.40 - lr: 0.000040 - momentum: 0.000000
|
380 |
+
2023-10-24 10:53:09,193 epoch 3 - iter 1323/1476 - loss 0.09646163 - time (sec): 86.46 - samples/sec: 1745.87 - lr: 0.000039 - momentum: 0.000000
|
381 |
+
2023-10-24 10:53:18,392 epoch 3 - iter 1470/1476 - loss 0.09593820 - time (sec): 95.66 - samples/sec: 1736.12 - lr: 0.000039 - momentum: 0.000000
|
382 |
+
2023-10-24 10:53:18,728 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-24 10:53:18,728 EPOCH 3 done: loss 0.0959 - lr: 0.000039
|
384 |
+
2023-10-24 10:53:27,143 DEV : loss 0.2701607942581177 - f1-score (micro avg) 0.763
|
385 |
+
2023-10-24 10:53:27,165 ----------------------------------------------------------------------------------------------------
|
386 |
+
2023-10-24 10:53:36,810 epoch 4 - iter 147/1476 - loss 0.12417453 - time (sec): 9.64 - samples/sec: 1745.60 - lr: 0.000038 - momentum: 0.000000
|
387 |
+
2023-10-24 10:53:46,534 epoch 4 - iter 294/1476 - loss 0.12118589 - time (sec): 19.37 - samples/sec: 1811.03 - lr: 0.000038 - momentum: 0.000000
|
388 |
+
2023-10-24 10:53:56,194 epoch 4 - iter 441/1476 - loss 0.10852964 - time (sec): 29.03 - samples/sec: 1781.74 - lr: 0.000037 - momentum: 0.000000
|
389 |
+
2023-10-24 10:54:05,524 epoch 4 - iter 588/1476 - loss 0.09519935 - time (sec): 38.36 - samples/sec: 1761.04 - lr: 0.000037 - momentum: 0.000000
|
390 |
+
2023-10-24 10:54:15,280 epoch 4 - iter 735/1476 - loss 0.09097434 - time (sec): 48.11 - samples/sec: 1766.24 - lr: 0.000036 - momentum: 0.000000
|
391 |
+
2023-10-24 10:54:24,715 epoch 4 - iter 882/1476 - loss 0.08614100 - time (sec): 57.55 - samples/sec: 1756.63 - lr: 0.000036 - momentum: 0.000000
|
392 |
+
2023-10-24 10:54:34,696 epoch 4 - iter 1029/1476 - loss 0.09487861 - time (sec): 67.53 - samples/sec: 1762.79 - lr: 0.000035 - momentum: 0.000000
|
393 |
+
2023-10-24 10:54:44,167 epoch 4 - iter 1176/1476 - loss 0.09394085 - time (sec): 77.00 - samples/sec: 1751.57 - lr: 0.000034 - momentum: 0.000000
|
394 |
+
2023-10-24 10:54:53,633 epoch 4 - iter 1323/1476 - loss 0.09504047 - time (sec): 86.47 - samples/sec: 1744.04 - lr: 0.000034 - momentum: 0.000000
|
395 |
+
2023-10-24 10:55:02,882 epoch 4 - iter 1470/1476 - loss 0.09448577 - time (sec): 95.72 - samples/sec: 1731.37 - lr: 0.000033 - momentum: 0.000000
|
396 |
+
2023-10-24 10:55:03,250 ----------------------------------------------------------------------------------------------------
|
397 |
+
2023-10-24 10:55:03,251 EPOCH 4 done: loss 0.0948 - lr: 0.000033
|
398 |
+
2023-10-24 10:55:11,668 DEV : loss 0.27863532304763794 - f1-score (micro avg) 0.7293
|
399 |
+
2023-10-24 10:55:11,689 ----------------------------------------------------------------------------------------------------
|
400 |
+
2023-10-24 10:55:21,448 epoch 5 - iter 147/1476 - loss 0.07291799 - time (sec): 9.76 - samples/sec: 1737.92 - lr: 0.000033 - momentum: 0.000000
|
401 |
+
2023-10-24 10:55:31,095 epoch 5 - iter 294/1476 - loss 0.11773689 - time (sec): 19.40 - samples/sec: 1770.59 - lr: 0.000032 - momentum: 0.000000
|
402 |
+
2023-10-24 10:55:40,949 epoch 5 - iter 441/1476 - loss 0.09833702 - time (sec): 29.26 - samples/sec: 1776.56 - lr: 0.000032 - momentum: 0.000000
|
403 |
+
2023-10-24 10:55:50,119 epoch 5 - iter 588/1476 - loss 0.08337112 - time (sec): 38.43 - samples/sec: 1746.88 - lr: 0.000031 - momentum: 0.000000
|
404 |
+
2023-10-24 10:56:00,122 epoch 5 - iter 735/1476 - loss 0.08978486 - time (sec): 48.43 - samples/sec: 1745.69 - lr: 0.000031 - momentum: 0.000000
|
405 |
+
2023-10-24 10:56:09,225 epoch 5 - iter 882/1476 - loss 0.08167065 - time (sec): 57.54 - samples/sec: 1723.59 - lr: 0.000030 - momentum: 0.000000
|
406 |
+
2023-10-24 10:56:18,288 epoch 5 - iter 1029/1476 - loss 0.07871689 - time (sec): 66.60 - samples/sec: 1719.04 - lr: 0.000029 - momentum: 0.000000
|
407 |
+
2023-10-24 10:56:27,625 epoch 5 - iter 1176/1476 - loss 0.07299931 - time (sec): 75.93 - samples/sec: 1704.49 - lr: 0.000029 - momentum: 0.000000
|
408 |
+
2023-10-24 10:56:37,116 epoch 5 - iter 1323/1476 - loss 0.07223057 - time (sec): 85.43 - samples/sec: 1710.28 - lr: 0.000028 - momentum: 0.000000
|
409 |
+
2023-10-24 10:56:47,474 epoch 5 - iter 1470/1476 - loss 0.07846900 - time (sec): 95.78 - samples/sec: 1733.07 - lr: 0.000028 - momentum: 0.000000
|
410 |
+
2023-10-24 10:56:47,814 ----------------------------------------------------------------------------------------------------
|
411 |
+
2023-10-24 10:56:47,815 EPOCH 5 done: loss 0.0784 - lr: 0.000028
|
412 |
+
2023-10-24 10:56:56,241 DEV : loss 0.25809499621391296 - f1-score (micro avg) 0.7499
|
413 |
+
2023-10-24 10:56:56,262 ----------------------------------------------------------------------------------------------------
|
414 |
+
2023-10-24 10:57:06,035 epoch 6 - iter 147/1476 - loss 0.05313087 - time (sec): 9.77 - samples/sec: 1824.29 - lr: 0.000027 - momentum: 0.000000
|
415 |
+
2023-10-24 10:57:15,603 epoch 6 - iter 294/1476 - loss 0.05439273 - time (sec): 19.34 - samples/sec: 1747.91 - lr: 0.000027 - momentum: 0.000000
|
416 |
+
2023-10-24 10:57:25,156 epoch 6 - iter 441/1476 - loss 0.04903707 - time (sec): 28.89 - samples/sec: 1733.35 - lr: 0.000026 - momentum: 0.000000
|
417 |
+
2023-10-24 10:57:34,744 epoch 6 - iter 588/1476 - loss 0.05877384 - time (sec): 38.48 - samples/sec: 1734.92 - lr: 0.000026 - momentum: 0.000000
|
418 |
+
2023-10-24 10:57:44,061 epoch 6 - iter 735/1476 - loss 0.05051822 - time (sec): 47.80 - samples/sec: 1727.89 - lr: 0.000025 - momentum: 0.000000
|
419 |
+
2023-10-24 10:57:53,790 epoch 6 - iter 882/1476 - loss 0.04679481 - time (sec): 57.53 - samples/sec: 1737.86 - lr: 0.000024 - momentum: 0.000000
|
420 |
+
2023-10-24 10:58:03,065 epoch 6 - iter 1029/1476 - loss 0.04646404 - time (sec): 66.80 - samples/sec: 1721.46 - lr: 0.000024 - momentum: 0.000000
|
421 |
+
2023-10-24 10:58:12,451 epoch 6 - iter 1176/1476 - loss 0.05002079 - time (sec): 76.19 - samples/sec: 1723.74 - lr: 0.000023 - momentum: 0.000000
|
422 |
+
2023-10-24 10:58:22,558 epoch 6 - iter 1323/1476 - loss 0.06170524 - time (sec): 86.30 - samples/sec: 1736.56 - lr: 0.000023 - momentum: 0.000000
|
423 |
+
2023-10-24 10:58:32,083 epoch 6 - iter 1470/1476 - loss 0.06160170 - time (sec): 95.82 - samples/sec: 1731.81 - lr: 0.000022 - momentum: 0.000000
|
424 |
+
2023-10-24 10:58:32,426 ----------------------------------------------------------------------------------------------------
|
425 |
+
2023-10-24 10:58:32,427 EPOCH 6 done: loss 0.0614 - lr: 0.000022
|
426 |
+
2023-10-24 10:58:40,876 DEV : loss 0.2634078860282898 - f1-score (micro avg) 0.772
|
427 |
+
2023-10-24 10:58:40,897 ----------------------------------------------------------------------------------------------------
|
428 |
+
2023-10-24 10:58:50,465 epoch 7 - iter 147/1476 - loss 0.04507495 - time (sec): 9.57 - samples/sec: 1717.08 - lr: 0.000022 - momentum: 0.000000
|
429 |
+
2023-10-24 10:58:59,978 epoch 7 - iter 294/1476 - loss 0.04197351 - time (sec): 19.08 - samples/sec: 1702.46 - lr: 0.000021 - momentum: 0.000000
|
430 |
+
2023-10-24 10:59:09,686 epoch 7 - iter 441/1476 - loss 0.06505740 - time (sec): 28.79 - samples/sec: 1729.16 - lr: 0.000021 - momentum: 0.000000
|
431 |
+
2023-10-24 10:59:18,963 epoch 7 - iter 588/1476 - loss 0.05418034 - time (sec): 38.07 - samples/sec: 1711.68 - lr: 0.000020 - momentum: 0.000000
|
432 |
+
2023-10-24 10:59:28,157 epoch 7 - iter 735/1476 - loss 0.04622712 - time (sec): 47.26 - samples/sec: 1700.72 - lr: 0.000019 - momentum: 0.000000
|
433 |
+
2023-10-24 10:59:38,265 epoch 7 - iter 882/1476 - loss 0.05893413 - time (sec): 57.37 - samples/sec: 1727.44 - lr: 0.000019 - momentum: 0.000000
|
434 |
+
2023-10-24 10:59:47,775 epoch 7 - iter 1029/1476 - loss 0.05878999 - time (sec): 66.88 - samples/sec: 1727.73 - lr: 0.000018 - momentum: 0.000000
|
435 |
+
2023-10-24 10:59:57,450 epoch 7 - iter 1176/1476 - loss 0.05964465 - time (sec): 76.55 - samples/sec: 1727.83 - lr: 0.000018 - momentum: 0.000000
|
436 |
+
2023-10-24 11:00:07,100 epoch 7 - iter 1323/1476 - loss 0.05826532 - time (sec): 86.20 - samples/sec: 1732.09 - lr: 0.000017 - momentum: 0.000000
|
437 |
+
2023-10-24 11:00:16,614 epoch 7 - iter 1470/1476 - loss 0.06281126 - time (sec): 95.72 - samples/sec: 1732.15 - lr: 0.000017 - momentum: 0.000000
|
438 |
+
2023-10-24 11:00:16,990 ----------------------------------------------------------------------------------------------------
|
439 |
+
2023-10-24 11:00:16,990 EPOCH 7 done: loss 0.0626 - lr: 0.000017
|
440 |
+
2023-10-24 11:00:25,435 DEV : loss 0.27169960737228394 - f1-score (micro avg) 0.7652
|
441 |
+
2023-10-24 11:00:25,457 ----------------------------------------------------------------------------------------------------
|
442 |
+
2023-10-24 11:00:34,865 epoch 8 - iter 147/1476 - loss 0.04542037 - time (sec): 9.41 - samples/sec: 1696.00 - lr: 0.000016 - momentum: 0.000000
|
443 |
+
2023-10-24 11:00:44,003 epoch 8 - iter 294/1476 - loss 0.02861702 - time (sec): 18.55 - samples/sec: 1657.60 - lr: 0.000016 - momentum: 0.000000
|
444 |
+
2023-10-24 11:00:54,239 epoch 8 - iter 441/1476 - loss 0.06281701 - time (sec): 28.78 - samples/sec: 1758.67 - lr: 0.000015 - momentum: 0.000000
|
445 |
+
2023-10-24 11:01:03,793 epoch 8 - iter 588/1476 - loss 0.05883833 - time (sec): 38.34 - samples/sec: 1759.21 - lr: 0.000014 - momentum: 0.000000
|
446 |
+
2023-10-24 11:01:13,566 epoch 8 - iter 735/1476 - loss 0.05103042 - time (sec): 48.11 - samples/sec: 1753.77 - lr: 0.000014 - momentum: 0.000000
|
447 |
+
2023-10-24 11:01:23,641 epoch 8 - iter 882/1476 - loss 0.05585751 - time (sec): 58.18 - samples/sec: 1761.22 - lr: 0.000013 - momentum: 0.000000
|
448 |
+
2023-10-24 11:01:32,886 epoch 8 - iter 1029/1476 - loss 0.05420164 - time (sec): 67.43 - samples/sec: 1741.28 - lr: 0.000013 - momentum: 0.000000
|
449 |
+
2023-10-24 11:01:42,145 epoch 8 - iter 1176/1476 - loss 0.05014942 - time (sec): 76.69 - samples/sec: 1733.69 - lr: 0.000012 - momentum: 0.000000
|
450 |
+
2023-10-24 11:01:51,484 epoch 8 - iter 1323/1476 - loss 0.04821620 - time (sec): 86.03 - samples/sec: 1730.02 - lr: 0.000012 - momentum: 0.000000
|
451 |
+
2023-10-24 11:02:01,128 epoch 8 - iter 1470/1476 - loss 0.04480348 - time (sec): 95.67 - samples/sec: 1732.32 - lr: 0.000011 - momentum: 0.000000
|
452 |
+
2023-10-24 11:02:01,495 ----------------------------------------------------------------------------------------------------
|
453 |
+
2023-10-24 11:02:01,495 EPOCH 8 done: loss 0.0447 - lr: 0.000011
|
454 |
+
2023-10-24 11:02:09,941 DEV : loss 0.30274227261543274 - f1-score (micro avg) 0.7626
|
455 |
+
2023-10-24 11:02:09,962 ----------------------------------------------------------------------------------------------------
|
456 |
+
2023-10-24 11:02:19,368 epoch 9 - iter 147/1476 - loss 0.02455183 - time (sec): 9.40 - samples/sec: 1690.22 - lr: 0.000011 - momentum: 0.000000
|
457 |
+
2023-10-24 11:02:29,184 epoch 9 - iter 294/1476 - loss 0.02908119 - time (sec): 19.22 - samples/sec: 1766.79 - lr: 0.000010 - momentum: 0.000000
|
458 |
+
2023-10-24 11:02:38,447 epoch 9 - iter 441/1476 - loss 0.03060954 - time (sec): 28.48 - samples/sec: 1720.29 - lr: 0.000009 - momentum: 0.000000
|
459 |
+
2023-10-24 11:02:47,999 epoch 9 - iter 588/1476 - loss 0.02637177 - time (sec): 38.04 - samples/sec: 1682.20 - lr: 0.000009 - momentum: 0.000000
|
460 |
+
2023-10-24 11:02:57,224 epoch 9 - iter 735/1476 - loss 0.02532292 - time (sec): 47.26 - samples/sec: 1686.95 - lr: 0.000008 - momentum: 0.000000
|
461 |
+
2023-10-24 11:03:06,638 epoch 9 - iter 882/1476 - loss 0.02620936 - time (sec): 56.67 - samples/sec: 1688.27 - lr: 0.000008 - momentum: 0.000000
|
462 |
+
2023-10-24 11:03:16,146 epoch 9 - iter 1029/1476 - loss 0.02456485 - time (sec): 66.18 - samples/sec: 1700.19 - lr: 0.000007 - momentum: 0.000000
|
463 |
+
2023-10-24 11:03:26,166 epoch 9 - iter 1176/1476 - loss 0.03675836 - time (sec): 76.20 - samples/sec: 1722.03 - lr: 0.000007 - momentum: 0.000000
|
464 |
+
2023-10-24 11:03:36,323 epoch 9 - iter 1323/1476 - loss 0.04061899 - time (sec): 86.36 - samples/sec: 1730.99 - lr: 0.000006 - momentum: 0.000000
|
465 |
+
2023-10-24 11:03:45,828 epoch 9 - iter 1470/1476 - loss 0.04002423 - time (sec): 95.86 - samples/sec: 1731.00 - lr: 0.000006 - momentum: 0.000000
|
466 |
+
2023-10-24 11:03:46,171 ----------------------------------------------------------------------------------------------------
|
467 |
+
2023-10-24 11:03:46,171 EPOCH 9 done: loss 0.0399 - lr: 0.000006
|
468 |
+
2023-10-24 11:03:54,596 DEV : loss 0.2963683307170868 - f1-score (micro avg) 0.7703
|
469 |
+
2023-10-24 11:03:54,618 ----------------------------------------------------------------------------------------------------
|
470 |
+
2023-10-24 11:04:04,051 epoch 10 - iter 147/1476 - loss 0.02704804 - time (sec): 9.43 - samples/sec: 1717.54 - lr: 0.000005 - momentum: 0.000000
|
471 |
+
2023-10-24 11:04:13,428 epoch 10 - iter 294/1476 - loss 0.02279645 - time (sec): 18.81 - samples/sec: 1701.66 - lr: 0.000004 - momentum: 0.000000
|
472 |
+
2023-10-24 11:04:23,321 epoch 10 - iter 441/1476 - loss 0.02018937 - time (sec): 28.70 - samples/sec: 1740.66 - lr: 0.000004 - momentum: 0.000000
|
473 |
+
2023-10-24 11:04:33,017 epoch 10 - iter 588/1476 - loss 0.02530081 - time (sec): 38.40 - samples/sec: 1760.38 - lr: 0.000003 - momentum: 0.000000
|
474 |
+
2023-10-24 11:04:43,267 epoch 10 - iter 735/1476 - loss 0.04049497 - time (sec): 48.65 - samples/sec: 1775.63 - lr: 0.000003 - momentum: 0.000000
|
475 |
+
2023-10-24 11:04:52,714 epoch 10 - iter 882/1476 - loss 0.04282402 - time (sec): 58.10 - samples/sec: 1761.20 - lr: 0.000002 - momentum: 0.000000
|
476 |
+
2023-10-24 11:05:02,523 epoch 10 - iter 1029/1476 - loss 0.04621028 - time (sec): 67.90 - samples/sec: 1756.59 - lr: 0.000002 - momentum: 0.000000
|
477 |
+
2023-10-24 11:05:11,678 epoch 10 - iter 1176/1476 - loss 0.04170952 - time (sec): 77.06 - samples/sec: 1742.51 - lr: 0.000001 - momentum: 0.000000
|
478 |
+
2023-10-24 11:05:20,869 epoch 10 - iter 1323/1476 - loss 0.03916033 - time (sec): 86.25 - samples/sec: 1733.25 - lr: 0.000001 - momentum: 0.000000
|
479 |
+
2023-10-24 11:05:30,215 epoch 10 - iter 1470/1476 - loss 0.03566834 - time (sec): 95.60 - samples/sec: 1735.21 - lr: 0.000000 - momentum: 0.000000
|
480 |
+
2023-10-24 11:05:30,559 ----------------------------------------------------------------------------------------------------
|
481 |
+
2023-10-24 11:05:30,559 EPOCH 10 done: loss 0.0356 - lr: 0.000000
|
482 |
+
2023-10-24 11:05:39,016 DEV : loss 0.30029311776161194 - f1-score (micro avg) 0.7695
|
483 |
+
2023-10-24 11:05:39,590 ----------------------------------------------------------------------------------------------------
|
484 |
+
2023-10-24 11:05:39,590 Loading model from best epoch ...
|
485 |
+
2023-10-24 11:05:41,453 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
|
486 |
+
2023-10-24 11:05:47,732
|
487 |
+
Results:
|
488 |
+
- F-score (micro) 0.7379
|
489 |
+
- F-score (macro) 0.6047
|
490 |
+
- Accuracy 0.6102
|
491 |
+
|
492 |
+
By class:
|
493 |
+
precision recall f1-score support
|
494 |
+
|
495 |
+
loc 0.8307 0.8520 0.8412 858
|
496 |
+
pers 0.6764 0.6927 0.6845 537
|
497 |
+
org 0.4410 0.5379 0.4846 132
|
498 |
+
time 0.5147 0.6481 0.5738 54
|
499 |
+
prod 0.6667 0.3279 0.4396 61
|
500 |
+
|
501 |
+
micro avg 0.7276 0.7485 0.7379 1642
|
502 |
+
macro avg 0.6259 0.6117 0.6047 1642
|
503 |
+
weighted avg 0.7324 0.7485 0.7376 1642
|
504 |
+
|
505 |
+
2023-10-24 11:05:47,732 ----------------------------------------------------------------------------------------------------
|