Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697555451.4c6324b99746.1390.0 +3 -0
- test.tsv +0 -0
- training.log +243 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81b698efeab5c724d3a73a83c6a57fceeb29170f49c36e145092722bd0e02774
|
3 |
+
size 440966725
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 15:11:42 0.0000 0.8054 0.1782 0.6387 0.5473 0.5895 0.4253
|
3 |
+
2 15:12:37 0.0000 0.1497 0.1211 0.6812 0.7568 0.7170 0.5793
|
4 |
+
3 15:13:32 0.0000 0.0812 0.1568 0.7701 0.6654 0.7139 0.5632
|
5 |
+
4 15:14:24 0.0000 0.0527 0.1432 0.7443 0.7873 0.7652 0.6402
|
6 |
+
5 15:15:19 0.0000 0.0361 0.1796 0.7845 0.7514 0.7676 0.6390
|
7 |
+
6 15:16:13 0.0000 0.0214 0.1912 0.7733 0.7920 0.7825 0.6557
|
8 |
+
7 15:17:08 0.0000 0.0154 0.2020 0.7722 0.8108 0.7910 0.6677
|
9 |
+
8 15:18:03 0.0000 0.0107 0.2056 0.7610 0.8092 0.7844 0.6601
|
10 |
+
9 15:18:56 0.0000 0.0063 0.2127 0.7845 0.8084 0.7963 0.6771
|
11 |
+
10 15:19:51 0.0000 0.0047 0.2154 0.7843 0.8100 0.7969 0.6771
|
runs/events.out.tfevents.1697555451.4c6324b99746.1390.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d59fd41e1381b052835214191036659bba46f0d9729ed41a62cfbc2375044f5
|
3 |
+
size 253592
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-17 15:10:51,606 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-17 15:10:51,608 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): ElectraModel(
|
5 |
+
(embeddings): ElectraEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): ElectraEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x ElectraLayer(
|
15 |
+
(attention): ElectraAttention(
|
16 |
+
(self): ElectraSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): ElectraSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): ElectraIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): ElectraOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
)
|
41 |
+
)
|
42 |
+
(locked_dropout): LockedDropout(p=0.5)
|
43 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
44 |
+
(loss_function): CrossEntropyLoss()
|
45 |
+
)"
|
46 |
+
2023-10-17 15:10:51,608 ----------------------------------------------------------------------------------------------------
|
47 |
+
2023-10-17 15:10:51,608 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
|
48 |
+
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
|
49 |
+
2023-10-17 15:10:51,608 ----------------------------------------------------------------------------------------------------
|
50 |
+
2023-10-17 15:10:51,608 Train: 3575 sentences
|
51 |
+
2023-10-17 15:10:51,609 (train_with_dev=False, train_with_test=False)
|
52 |
+
2023-10-17 15:10:51,609 ----------------------------------------------------------------------------------------------------
|
53 |
+
2023-10-17 15:10:51,609 Training Params:
|
54 |
+
2023-10-17 15:10:51,609 - learning_rate: "3e-05"
|
55 |
+
2023-10-17 15:10:51,609 - mini_batch_size: "8"
|
56 |
+
2023-10-17 15:10:51,609 - max_epochs: "10"
|
57 |
+
2023-10-17 15:10:51,609 - shuffle: "True"
|
58 |
+
2023-10-17 15:10:51,609 ----------------------------------------------------------------------------------------------------
|
59 |
+
2023-10-17 15:10:51,609 Plugins:
|
60 |
+
2023-10-17 15:10:51,609 - TensorboardLogger
|
61 |
+
2023-10-17 15:10:51,609 - LinearScheduler | warmup_fraction: '0.1'
|
62 |
+
2023-10-17 15:10:51,609 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-17 15:10:51,609 Final evaluation on model from best epoch (best-model.pt)
|
64 |
+
2023-10-17 15:10:51,610 - metric: "('micro avg', 'f1-score')"
|
65 |
+
2023-10-17 15:10:51,610 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-17 15:10:51,610 Computation:
|
67 |
+
2023-10-17 15:10:51,610 - compute on device: cuda:0
|
68 |
+
2023-10-17 15:10:51,610 - embedding storage: none
|
69 |
+
2023-10-17 15:10:51,610 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-17 15:10:51,610 Model training base path: "hmbench-hipe2020/de-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
|
71 |
+
2023-10-17 15:10:51,610 ----------------------------------------------------------------------------------------------------
|
72 |
+
2023-10-17 15:10:51,610 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-17 15:10:51,610 Logging anything other than scalars to TensorBoard is currently not supported.
|
74 |
+
2023-10-17 15:10:56,808 epoch 1 - iter 44/447 - loss 3.46567148 - time (sec): 5.20 - samples/sec: 1711.38 - lr: 0.000003 - momentum: 0.000000
|
75 |
+
2023-10-17 15:11:00,812 epoch 1 - iter 88/447 - loss 2.59735198 - time (sec): 9.20 - samples/sec: 1852.89 - lr: 0.000006 - momentum: 0.000000
|
76 |
+
2023-10-17 15:11:04,862 epoch 1 - iter 132/447 - loss 1.95725490 - time (sec): 13.25 - samples/sec: 1922.63 - lr: 0.000009 - momentum: 0.000000
|
77 |
+
2023-10-17 15:11:08,852 epoch 1 - iter 176/447 - loss 1.57353600 - time (sec): 17.24 - samples/sec: 2001.18 - lr: 0.000012 - momentum: 0.000000
|
78 |
+
2023-10-17 15:11:13,098 epoch 1 - iter 220/447 - loss 1.32853362 - time (sec): 21.49 - samples/sec: 2016.42 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-17 15:11:17,371 epoch 1 - iter 264/447 - loss 1.16250705 - time (sec): 25.76 - samples/sec: 2010.43 - lr: 0.000018 - momentum: 0.000000
|
80 |
+
2023-10-17 15:11:21,615 epoch 1 - iter 308/447 - loss 1.04918854 - time (sec): 30.00 - samples/sec: 1997.94 - lr: 0.000021 - momentum: 0.000000
|
81 |
+
2023-10-17 15:11:25,906 epoch 1 - iter 352/447 - loss 0.96192982 - time (sec): 34.29 - samples/sec: 1983.35 - lr: 0.000024 - momentum: 0.000000
|
82 |
+
2023-10-17 15:11:30,459 epoch 1 - iter 396/447 - loss 0.87615452 - time (sec): 38.85 - samples/sec: 1991.18 - lr: 0.000027 - momentum: 0.000000
|
83 |
+
2023-10-17 15:11:34,926 epoch 1 - iter 440/447 - loss 0.81319104 - time (sec): 43.31 - samples/sec: 1971.57 - lr: 0.000029 - momentum: 0.000000
|
84 |
+
2023-10-17 15:11:35,605 ----------------------------------------------------------------------------------------------------
|
85 |
+
2023-10-17 15:11:35,605 EPOCH 1 done: loss 0.8054 - lr: 0.000029
|
86 |
+
2023-10-17 15:11:41,993 DEV : loss 0.17819160223007202 - f1-score (micro avg) 0.5895
|
87 |
+
2023-10-17 15:11:42,045 saving best model
|
88 |
+
2023-10-17 15:11:42,637 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-17 15:11:46,828 epoch 2 - iter 44/447 - loss 0.21747760 - time (sec): 4.19 - samples/sec: 2038.97 - lr: 0.000030 - momentum: 0.000000
|
90 |
+
2023-10-17 15:11:51,276 epoch 2 - iter 88/447 - loss 0.19904981 - time (sec): 8.64 - samples/sec: 1919.57 - lr: 0.000029 - momentum: 0.000000
|
91 |
+
2023-10-17 15:11:55,382 epoch 2 - iter 132/447 - loss 0.19320002 - time (sec): 12.74 - samples/sec: 1949.21 - lr: 0.000029 - momentum: 0.000000
|
92 |
+
2023-10-17 15:11:59,652 epoch 2 - iter 176/447 - loss 0.17629144 - time (sec): 17.01 - samples/sec: 1973.11 - lr: 0.000029 - momentum: 0.000000
|
93 |
+
2023-10-17 15:12:03,802 epoch 2 - iter 220/447 - loss 0.16743674 - time (sec): 21.16 - samples/sec: 1979.03 - lr: 0.000028 - momentum: 0.000000
|
94 |
+
2023-10-17 15:12:07,900 epoch 2 - iter 264/447 - loss 0.16450320 - time (sec): 25.26 - samples/sec: 2014.54 - lr: 0.000028 - momentum: 0.000000
|
95 |
+
2023-10-17 15:12:12,274 epoch 2 - iter 308/447 - loss 0.16199472 - time (sec): 29.63 - samples/sec: 2010.23 - lr: 0.000028 - momentum: 0.000000
|
96 |
+
2023-10-17 15:12:16,738 epoch 2 - iter 352/447 - loss 0.15732773 - time (sec): 34.10 - samples/sec: 2008.44 - lr: 0.000027 - momentum: 0.000000
|
97 |
+
2023-10-17 15:12:21,021 epoch 2 - iter 396/447 - loss 0.15418639 - time (sec): 38.38 - samples/sec: 1989.87 - lr: 0.000027 - momentum: 0.000000
|
98 |
+
2023-10-17 15:12:25,441 epoch 2 - iter 440/447 - loss 0.14935900 - time (sec): 42.80 - samples/sec: 1991.28 - lr: 0.000027 - momentum: 0.000000
|
99 |
+
2023-10-17 15:12:26,065 ----------------------------------------------------------------------------------------------------
|
100 |
+
2023-10-17 15:12:26,066 EPOCH 2 done: loss 0.1497 - lr: 0.000027
|
101 |
+
2023-10-17 15:12:37,010 DEV : loss 0.121131531894207 - f1-score (micro avg) 0.717
|
102 |
+
2023-10-17 15:12:37,066 saving best model
|
103 |
+
2023-10-17 15:12:38,529 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-17 15:12:43,063 epoch 3 - iter 44/447 - loss 0.07330655 - time (sec): 4.53 - samples/sec: 2087.82 - lr: 0.000026 - momentum: 0.000000
|
105 |
+
2023-10-17 15:12:47,404 epoch 3 - iter 88/447 - loss 0.08406998 - time (sec): 8.87 - samples/sec: 2094.54 - lr: 0.000026 - momentum: 0.000000
|
106 |
+
2023-10-17 15:12:51,445 epoch 3 - iter 132/447 - loss 0.08303447 - time (sec): 12.91 - samples/sec: 2060.80 - lr: 0.000026 - momentum: 0.000000
|
107 |
+
2023-10-17 15:12:55,553 epoch 3 - iter 176/447 - loss 0.08452492 - time (sec): 17.02 - samples/sec: 2014.40 - lr: 0.000025 - momentum: 0.000000
|
108 |
+
2023-10-17 15:12:59,615 epoch 3 - iter 220/447 - loss 0.07986201 - time (sec): 21.08 - samples/sec: 2019.64 - lr: 0.000025 - momentum: 0.000000
|
109 |
+
2023-10-17 15:13:03,617 epoch 3 - iter 264/447 - loss 0.08080735 - time (sec): 25.08 - samples/sec: 2014.92 - lr: 0.000025 - momentum: 0.000000
|
110 |
+
2023-10-17 15:13:07,691 epoch 3 - iter 308/447 - loss 0.08052641 - time (sec): 29.16 - samples/sec: 2012.25 - lr: 0.000024 - momentum: 0.000000
|
111 |
+
2023-10-17 15:13:11,889 epoch 3 - iter 352/447 - loss 0.08174841 - time (sec): 33.36 - samples/sec: 2034.42 - lr: 0.000024 - momentum: 0.000000
|
112 |
+
2023-10-17 15:13:16,242 epoch 3 - iter 396/447 - loss 0.08169126 - time (sec): 37.71 - samples/sec: 2030.32 - lr: 0.000024 - momentum: 0.000000
|
113 |
+
2023-10-17 15:13:21,151 epoch 3 - iter 440/447 - loss 0.08007725 - time (sec): 42.62 - samples/sec: 2005.07 - lr: 0.000023 - momentum: 0.000000
|
114 |
+
2023-10-17 15:13:21,853 ----------------------------------------------------------------------------------------------------
|
115 |
+
2023-10-17 15:13:21,854 EPOCH 3 done: loss 0.0812 - lr: 0.000023
|
116 |
+
2023-10-17 15:13:32,439 DEV : loss 0.15675058960914612 - f1-score (micro avg) 0.7139
|
117 |
+
2023-10-17 15:13:32,498 ----------------------------------------------------------------------------------------------------
|
118 |
+
2023-10-17 15:13:36,551 epoch 4 - iter 44/447 - loss 0.05960453 - time (sec): 4.05 - samples/sec: 2032.10 - lr: 0.000023 - momentum: 0.000000
|
119 |
+
2023-10-17 15:13:40,410 epoch 4 - iter 88/447 - loss 0.05853170 - time (sec): 7.91 - samples/sec: 2075.57 - lr: 0.000023 - momentum: 0.000000
|
120 |
+
2023-10-17 15:13:44,159 epoch 4 - iter 132/447 - loss 0.05869183 - time (sec): 11.66 - samples/sec: 2053.57 - lr: 0.000022 - momentum: 0.000000
|
121 |
+
2023-10-17 15:13:48,179 epoch 4 - iter 176/447 - loss 0.05390845 - time (sec): 15.68 - samples/sec: 2080.79 - lr: 0.000022 - momentum: 0.000000
|
122 |
+
2023-10-17 15:13:52,777 epoch 4 - iter 220/447 - loss 0.05440630 - time (sec): 20.28 - samples/sec: 2117.44 - lr: 0.000022 - momentum: 0.000000
|
123 |
+
2023-10-17 15:13:56,642 epoch 4 - iter 264/447 - loss 0.05213091 - time (sec): 24.14 - samples/sec: 2122.45 - lr: 0.000021 - momentum: 0.000000
|
124 |
+
2023-10-17 15:14:00,645 epoch 4 - iter 308/447 - loss 0.05379991 - time (sec): 28.14 - samples/sec: 2127.14 - lr: 0.000021 - momentum: 0.000000
|
125 |
+
2023-10-17 15:14:04,887 epoch 4 - iter 352/447 - loss 0.05183150 - time (sec): 32.39 - samples/sec: 2119.64 - lr: 0.000021 - momentum: 0.000000
|
126 |
+
2023-10-17 15:14:09,178 epoch 4 - iter 396/447 - loss 0.05387250 - time (sec): 36.68 - samples/sec: 2101.13 - lr: 0.000020 - momentum: 0.000000
|
127 |
+
2023-10-17 15:14:13,147 epoch 4 - iter 440/447 - loss 0.05274153 - time (sec): 40.65 - samples/sec: 2095.95 - lr: 0.000020 - momentum: 0.000000
|
128 |
+
2023-10-17 15:14:13,788 ----------------------------------------------------------------------------------------------------
|
129 |
+
2023-10-17 15:14:13,789 EPOCH 4 done: loss 0.0527 - lr: 0.000020
|
130 |
+
2023-10-17 15:14:24,686 DEV : loss 0.1432371437549591 - f1-score (micro avg) 0.7652
|
131 |
+
2023-10-17 15:14:24,741 saving best model
|
132 |
+
2023-10-17 15:14:26,201 ----------------------------------------------------------------------------------------------------
|
133 |
+
2023-10-17 15:14:30,362 epoch 5 - iter 44/447 - loss 0.03425498 - time (sec): 4.15 - samples/sec: 2131.34 - lr: 0.000020 - momentum: 0.000000
|
134 |
+
2023-10-17 15:14:34,382 epoch 5 - iter 88/447 - loss 0.04218378 - time (sec): 8.17 - samples/sec: 2117.81 - lr: 0.000019 - momentum: 0.000000
|
135 |
+
2023-10-17 15:14:38,597 epoch 5 - iter 132/447 - loss 0.03552931 - time (sec): 12.39 - samples/sec: 2128.68 - lr: 0.000019 - momentum: 0.000000
|
136 |
+
2023-10-17 15:14:42,572 epoch 5 - iter 176/447 - loss 0.03486655 - time (sec): 16.36 - samples/sec: 2084.69 - lr: 0.000019 - momentum: 0.000000
|
137 |
+
2023-10-17 15:14:46,916 epoch 5 - iter 220/447 - loss 0.03783913 - time (sec): 20.71 - samples/sec: 2092.19 - lr: 0.000018 - momentum: 0.000000
|
138 |
+
2023-10-17 15:14:50,784 epoch 5 - iter 264/447 - loss 0.03764549 - time (sec): 24.58 - samples/sec: 2092.49 - lr: 0.000018 - momentum: 0.000000
|
139 |
+
2023-10-17 15:14:54,875 epoch 5 - iter 308/447 - loss 0.03645640 - time (sec): 28.67 - samples/sec: 2087.45 - lr: 0.000018 - momentum: 0.000000
|
140 |
+
2023-10-17 15:14:58,976 epoch 5 - iter 352/447 - loss 0.03547440 - time (sec): 32.77 - samples/sec: 2087.15 - lr: 0.000017 - momentum: 0.000000
|
141 |
+
2023-10-17 15:15:02,988 epoch 5 - iter 396/447 - loss 0.03520422 - time (sec): 36.78 - samples/sec: 2085.61 - lr: 0.000017 - momentum: 0.000000
|
142 |
+
2023-10-17 15:15:07,284 epoch 5 - iter 440/447 - loss 0.03609226 - time (sec): 41.07 - samples/sec: 2079.54 - lr: 0.000017 - momentum: 0.000000
|
143 |
+
2023-10-17 15:15:07,916 ----------------------------------------------------------------------------------------------------
|
144 |
+
2023-10-17 15:15:07,916 EPOCH 5 done: loss 0.0361 - lr: 0.000017
|
145 |
+
2023-10-17 15:15:19,049 DEV : loss 0.17960673570632935 - f1-score (micro avg) 0.7676
|
146 |
+
2023-10-17 15:15:19,119 saving best model
|
147 |
+
2023-10-17 15:15:19,772 ----------------------------------------------------------------------------------------------------
|
148 |
+
2023-10-17 15:15:23,817 epoch 6 - iter 44/447 - loss 0.01947292 - time (sec): 4.04 - samples/sec: 2052.75 - lr: 0.000016 - momentum: 0.000000
|
149 |
+
2023-10-17 15:15:28,029 epoch 6 - iter 88/447 - loss 0.02262571 - time (sec): 8.25 - samples/sec: 2033.87 - lr: 0.000016 - momentum: 0.000000
|
150 |
+
2023-10-17 15:15:32,196 epoch 6 - iter 132/447 - loss 0.02552581 - time (sec): 12.42 - samples/sec: 2048.82 - lr: 0.000016 - momentum: 0.000000
|
151 |
+
2023-10-17 15:15:36,588 epoch 6 - iter 176/447 - loss 0.02416652 - time (sec): 16.81 - samples/sec: 2033.48 - lr: 0.000015 - momentum: 0.000000
|
152 |
+
2023-10-17 15:15:41,376 epoch 6 - iter 220/447 - loss 0.02289846 - time (sec): 21.60 - samples/sec: 1992.25 - lr: 0.000015 - momentum: 0.000000
|
153 |
+
2023-10-17 15:15:45,381 epoch 6 - iter 264/447 - loss 0.02205499 - time (sec): 25.61 - samples/sec: 1982.77 - lr: 0.000015 - momentum: 0.000000
|
154 |
+
2023-10-17 15:15:49,840 epoch 6 - iter 308/447 - loss 0.02142818 - time (sec): 30.06 - samples/sec: 2011.66 - lr: 0.000014 - momentum: 0.000000
|
155 |
+
2023-10-17 15:15:53,927 epoch 6 - iter 352/447 - loss 0.02163330 - time (sec): 34.15 - samples/sec: 2018.37 - lr: 0.000014 - momentum: 0.000000
|
156 |
+
2023-10-17 15:15:58,088 epoch 6 - iter 396/447 - loss 0.02092477 - time (sec): 38.31 - samples/sec: 2018.93 - lr: 0.000014 - momentum: 0.000000
|
157 |
+
2023-10-17 15:16:02,149 epoch 6 - iter 440/447 - loss 0.02118031 - time (sec): 42.37 - samples/sec: 2012.21 - lr: 0.000013 - momentum: 0.000000
|
158 |
+
2023-10-17 15:16:02,784 ----------------------------------------------------------------------------------------------------
|
159 |
+
2023-10-17 15:16:02,784 EPOCH 6 done: loss 0.0214 - lr: 0.000013
|
160 |
+
2023-10-17 15:16:13,256 DEV : loss 0.19122734665870667 - f1-score (micro avg) 0.7825
|
161 |
+
2023-10-17 15:16:13,317 saving best model
|
162 |
+
2023-10-17 15:16:14,798 ----------------------------------------------------------------------------------------------------
|
163 |
+
2023-10-17 15:16:19,322 epoch 7 - iter 44/447 - loss 0.01563041 - time (sec): 4.52 - samples/sec: 2112.02 - lr: 0.000013 - momentum: 0.000000
|
164 |
+
2023-10-17 15:16:23,326 epoch 7 - iter 88/447 - loss 0.01611607 - time (sec): 8.52 - samples/sec: 2092.41 - lr: 0.000013 - momentum: 0.000000
|
165 |
+
2023-10-17 15:16:27,501 epoch 7 - iter 132/447 - loss 0.01689545 - time (sec): 12.70 - samples/sec: 2094.16 - lr: 0.000012 - momentum: 0.000000
|
166 |
+
2023-10-17 15:16:32,005 epoch 7 - iter 176/447 - loss 0.01747896 - time (sec): 17.20 - samples/sec: 2094.26 - lr: 0.000012 - momentum: 0.000000
|
167 |
+
2023-10-17 15:16:36,046 epoch 7 - iter 220/447 - loss 0.01716074 - time (sec): 21.24 - samples/sec: 2096.32 - lr: 0.000012 - momentum: 0.000000
|
168 |
+
2023-10-17 15:16:40,073 epoch 7 - iter 264/447 - loss 0.01541518 - time (sec): 25.27 - samples/sec: 2078.44 - lr: 0.000011 - momentum: 0.000000
|
169 |
+
2023-10-17 15:16:44,301 epoch 7 - iter 308/447 - loss 0.01645470 - time (sec): 29.50 - samples/sec: 2057.27 - lr: 0.000011 - momentum: 0.000000
|
170 |
+
2023-10-17 15:16:48,361 epoch 7 - iter 352/447 - loss 0.01683787 - time (sec): 33.56 - samples/sec: 2062.46 - lr: 0.000011 - momentum: 0.000000
|
171 |
+
2023-10-17 15:16:52,388 epoch 7 - iter 396/447 - loss 0.01616763 - time (sec): 37.58 - samples/sec: 2062.57 - lr: 0.000010 - momentum: 0.000000
|
172 |
+
2023-10-17 15:16:56,416 epoch 7 - iter 440/447 - loss 0.01561036 - time (sec): 41.61 - samples/sec: 2048.57 - lr: 0.000010 - momentum: 0.000000
|
173 |
+
2023-10-17 15:16:57,057 ----------------------------------------------------------------------------------------------------
|
174 |
+
2023-10-17 15:16:57,058 EPOCH 7 done: loss 0.0154 - lr: 0.000010
|
175 |
+
2023-10-17 15:17:07,982 DEV : loss 0.20203104615211487 - f1-score (micro avg) 0.791
|
176 |
+
2023-10-17 15:17:08,037 saving best model
|
177 |
+
2023-10-17 15:17:09,651 ----------------------------------------------------------------------------------------------------
|
178 |
+
2023-10-17 15:17:14,128 epoch 8 - iter 44/447 - loss 0.00477927 - time (sec): 4.48 - samples/sec: 1823.23 - lr: 0.000010 - momentum: 0.000000
|
179 |
+
2023-10-17 15:17:18,206 epoch 8 - iter 88/447 - loss 0.01009409 - time (sec): 8.55 - samples/sec: 1909.09 - lr: 0.000009 - momentum: 0.000000
|
180 |
+
2023-10-17 15:17:22,409 epoch 8 - iter 132/447 - loss 0.01037176 - time (sec): 12.76 - samples/sec: 1898.29 - lr: 0.000009 - momentum: 0.000000
|
181 |
+
2023-10-17 15:17:26,995 epoch 8 - iter 176/447 - loss 0.00910357 - time (sec): 17.34 - samples/sec: 1899.72 - lr: 0.000009 - momentum: 0.000000
|
182 |
+
2023-10-17 15:17:31,092 epoch 8 - iter 220/447 - loss 0.00883076 - time (sec): 21.44 - samples/sec: 1947.85 - lr: 0.000008 - momentum: 0.000000
|
183 |
+
2023-10-17 15:17:35,078 epoch 8 - iter 264/447 - loss 0.00841667 - time (sec): 25.42 - samples/sec: 1967.05 - lr: 0.000008 - momentum: 0.000000
|
184 |
+
2023-10-17 15:17:39,106 epoch 8 - iter 308/447 - loss 0.00937271 - time (sec): 29.45 - samples/sec: 1973.97 - lr: 0.000008 - momentum: 0.000000
|
185 |
+
2023-10-17 15:17:43,218 epoch 8 - iter 352/447 - loss 0.01054465 - time (sec): 33.56 - samples/sec: 1977.60 - lr: 0.000007 - momentum: 0.000000
|
186 |
+
2023-10-17 15:17:47,869 epoch 8 - iter 396/447 - loss 0.01105462 - time (sec): 38.22 - samples/sec: 1983.69 - lr: 0.000007 - momentum: 0.000000
|
187 |
+
2023-10-17 15:17:52,348 epoch 8 - iter 440/447 - loss 0.01082183 - time (sec): 42.69 - samples/sec: 1996.49 - lr: 0.000007 - momentum: 0.000000
|
188 |
+
2023-10-17 15:17:52,961 ----------------------------------------------------------------------------------------------------
|
189 |
+
2023-10-17 15:17:52,962 EPOCH 8 done: loss 0.0107 - lr: 0.000007
|
190 |
+
2023-10-17 15:18:03,854 DEV : loss 0.20561201870441437 - f1-score (micro avg) 0.7844
|
191 |
+
2023-10-17 15:18:03,914 ----------------------------------------------------------------------------------------------------
|
192 |
+
2023-10-17 15:18:08,009 epoch 9 - iter 44/447 - loss 0.00258760 - time (sec): 4.09 - samples/sec: 1856.78 - lr: 0.000006 - momentum: 0.000000
|
193 |
+
2023-10-17 15:18:12,008 epoch 9 - iter 88/447 - loss 0.00437519 - time (sec): 8.09 - samples/sec: 1977.19 - lr: 0.000006 - momentum: 0.000000
|
194 |
+
2023-10-17 15:18:16,094 epoch 9 - iter 132/447 - loss 0.00474581 - time (sec): 12.18 - samples/sec: 1996.66 - lr: 0.000006 - momentum: 0.000000
|
195 |
+
2023-10-17 15:18:20,052 epoch 9 - iter 176/447 - loss 0.00461352 - time (sec): 16.14 - samples/sec: 2023.33 - lr: 0.000005 - momentum: 0.000000
|
196 |
+
2023-10-17 15:18:24,813 epoch 9 - iter 220/447 - loss 0.00511861 - time (sec): 20.90 - samples/sec: 2058.16 - lr: 0.000005 - momentum: 0.000000
|
197 |
+
2023-10-17 15:18:28,845 epoch 9 - iter 264/447 - loss 0.00514456 - time (sec): 24.93 - samples/sec: 2081.35 - lr: 0.000005 - momentum: 0.000000
|
198 |
+
2023-10-17 15:18:32,841 epoch 9 - iter 308/447 - loss 0.00607397 - time (sec): 28.93 - samples/sec: 2074.45 - lr: 0.000004 - momentum: 0.000000
|
199 |
+
2023-10-17 15:18:37,079 epoch 9 - iter 352/447 - loss 0.00657719 - time (sec): 33.16 - samples/sec: 2052.89 - lr: 0.000004 - momentum: 0.000000
|
200 |
+
2023-10-17 15:18:41,085 epoch 9 - iter 396/447 - loss 0.00653218 - time (sec): 37.17 - samples/sec: 2061.49 - lr: 0.000004 - momentum: 0.000000
|
201 |
+
2023-10-17 15:18:45,228 epoch 9 - iter 440/447 - loss 0.00638953 - time (sec): 41.31 - samples/sec: 2055.17 - lr: 0.000003 - momentum: 0.000000
|
202 |
+
2023-10-17 15:18:45,868 ----------------------------------------------------------------------------------------------------
|
203 |
+
2023-10-17 15:18:45,868 EPOCH 9 done: loss 0.0063 - lr: 0.000003
|
204 |
+
2023-10-17 15:18:56,866 DEV : loss 0.21265345811843872 - f1-score (micro avg) 0.7963
|
205 |
+
2023-10-17 15:18:56,921 saving best model
|
206 |
+
2023-10-17 15:18:58,425 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-10-17 15:19:02,563 epoch 10 - iter 44/447 - loss 0.00272302 - time (sec): 4.13 - samples/sec: 2064.17 - lr: 0.000003 - momentum: 0.000000
|
208 |
+
2023-10-17 15:19:06,593 epoch 10 - iter 88/447 - loss 0.00325765 - time (sec): 8.16 - samples/sec: 2021.55 - lr: 0.000003 - momentum: 0.000000
|
209 |
+
2023-10-17 15:19:11,047 epoch 10 - iter 132/447 - loss 0.00362277 - time (sec): 12.61 - samples/sec: 2084.14 - lr: 0.000002 - momentum: 0.000000
|
210 |
+
2023-10-17 15:19:15,000 epoch 10 - iter 176/447 - loss 0.00528389 - time (sec): 16.57 - samples/sec: 2062.23 - lr: 0.000002 - momentum: 0.000000
|
211 |
+
2023-10-17 15:19:19,112 epoch 10 - iter 220/447 - loss 0.00509353 - time (sec): 20.68 - samples/sec: 2078.14 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-10-17 15:19:23,347 epoch 10 - iter 264/447 - loss 0.00465258 - time (sec): 24.91 - samples/sec: 2077.33 - lr: 0.000001 - momentum: 0.000000
|
213 |
+
2023-10-17 15:19:27,449 epoch 10 - iter 308/447 - loss 0.00478916 - time (sec): 29.01 - samples/sec: 2067.22 - lr: 0.000001 - momentum: 0.000000
|
214 |
+
2023-10-17 15:19:31,720 epoch 10 - iter 352/447 - loss 0.00507025 - time (sec): 33.29 - samples/sec: 2067.93 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-17 15:19:35,681 epoch 10 - iter 396/447 - loss 0.00469527 - time (sec): 37.25 - samples/sec: 2054.64 - lr: 0.000000 - momentum: 0.000000
|
216 |
+
2023-10-17 15:19:39,828 epoch 10 - iter 440/447 - loss 0.00471393 - time (sec): 41.39 - samples/sec: 2062.13 - lr: 0.000000 - momentum: 0.000000
|
217 |
+
2023-10-17 15:19:40,443 ----------------------------------------------------------------------------------------------------
|
218 |
+
2023-10-17 15:19:40,444 EPOCH 10 done: loss 0.0047 - lr: 0.000000
|
219 |
+
2023-10-17 15:19:51,679 DEV : loss 0.21538716554641724 - f1-score (micro avg) 0.7969
|
220 |
+
2023-10-17 15:19:51,731 saving best model
|
221 |
+
2023-10-17 15:19:53,070 ----------------------------------------------------------------------------------------------------
|
222 |
+
2023-10-17 15:19:53,072 Loading model from best epoch ...
|
223 |
+
2023-10-17 15:19:55,890 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
|
224 |
+
2023-10-17 15:20:01,461
|
225 |
+
Results:
|
226 |
+
- F-score (micro) 0.7606
|
227 |
+
- F-score (macro) 0.6789
|
228 |
+
- Accuracy 0.6344
|
229 |
+
|
230 |
+
By class:
|
231 |
+
precision recall f1-score support
|
232 |
+
|
233 |
+
loc 0.8482 0.8624 0.8552 596
|
234 |
+
pers 0.6778 0.7898 0.7295 333
|
235 |
+
org 0.5143 0.5455 0.5294 132
|
236 |
+
prod 0.6000 0.5000 0.5455 66
|
237 |
+
time 0.7347 0.7347 0.7347 49
|
238 |
+
|
239 |
+
micro avg 0.7415 0.7806 0.7606 1176
|
240 |
+
macro avg 0.6750 0.6865 0.6789 1176
|
241 |
+
weighted avg 0.7438 0.7806 0.7607 1176
|
242 |
+
|
243 |
+
2023-10-17 15:20:01,461 ----------------------------------------------------------------------------------------------------
|