|
2023-10-17 15:44:35,152 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:44:35,154 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): ElectraModel( |
|
(embeddings): ElectraEmbeddings( |
|
(word_embeddings): Embedding(32001, 768) |
|
(position_embeddings): Embedding(512, 768) |
|
(token_type_embeddings): Embedding(2, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): ElectraEncoder( |
|
(layer): ModuleList( |
|
(0-11): 12 x ElectraLayer( |
|
(attention): ElectraAttention( |
|
(self): ElectraSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): ElectraSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): ElectraIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): ElectraOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=21, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-17 15:44:35,154 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:44:35,155 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences |
|
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator |
|
2023-10-17 15:44:35,155 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:44:35,155 Train: 3575 sentences |
|
2023-10-17 15:44:35,155 (train_with_dev=False, train_with_test=False) |
|
2023-10-17 15:44:35,155 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:44:35,155 Training Params: |
|
2023-10-17 15:44:35,155 - learning_rate: "5e-05" |
|
2023-10-17 15:44:35,155 - mini_batch_size: "4" |
|
2023-10-17 15:44:35,155 - max_epochs: "10" |
|
2023-10-17 15:44:35,155 - shuffle: "True" |
|
2023-10-17 15:44:35,156 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:44:35,156 Plugins: |
|
2023-10-17 15:44:35,156 - TensorboardLogger |
|
2023-10-17 15:44:35,156 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-17 15:44:35,156 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:44:35,156 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-17 15:44:35,156 - metric: "('micro avg', 'f1-score')" |
|
2023-10-17 15:44:35,156 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:44:35,156 Computation: |
|
2023-10-17 15:44:35,156 - compute on device: cuda:0 |
|
2023-10-17 15:44:35,156 - embedding storage: none |
|
2023-10-17 15:44:35,156 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:44:35,156 Model training base path: "hmbench-hipe2020/de-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1" |
|
2023-10-17 15:44:35,156 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:44:35,156 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:44:35,157 Logging anything other than scalars to TensorBoard is currently not supported. |
|
2023-10-17 15:44:42,344 epoch 1 - iter 89/894 - loss 2.91539600 - time (sec): 7.19 - samples/sec: 1246.80 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 15:44:49,272 epoch 1 - iter 178/894 - loss 1.80464316 - time (sec): 14.11 - samples/sec: 1222.26 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 15:44:56,189 epoch 1 - iter 267/894 - loss 1.36782446 - time (sec): 21.03 - samples/sec: 1228.23 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 15:45:03,113 epoch 1 - iter 356/894 - loss 1.10936834 - time (sec): 27.96 - samples/sec: 1247.79 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 15:45:10,564 epoch 1 - iter 445/894 - loss 0.93995891 - time (sec): 35.41 - samples/sec: 1236.66 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 15:45:17,587 epoch 1 - iter 534/894 - loss 0.90914551 - time (sec): 42.43 - samples/sec: 1232.63 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-17 15:45:24,470 epoch 1 - iter 623/894 - loss 0.83544821 - time (sec): 49.31 - samples/sec: 1231.63 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-17 15:45:31,417 epoch 1 - iter 712/894 - loss 0.76823309 - time (sec): 56.26 - samples/sec: 1224.39 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-17 15:45:38,609 epoch 1 - iter 801/894 - loss 0.70255786 - time (sec): 63.45 - samples/sec: 1234.50 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-17 15:45:45,502 epoch 1 - iter 890/894 - loss 0.65383812 - time (sec): 70.34 - samples/sec: 1225.86 - lr: 0.000050 - momentum: 0.000000 |
|
2023-10-17 15:45:45,802 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:45:45,802 EPOCH 1 done: loss 0.6525 - lr: 0.000050 |
|
2023-10-17 15:45:52,567 DEV : loss 0.18383200466632843 - f1-score (micro avg) 0.5787 |
|
2023-10-17 15:45:52,644 saving best model |
|
2023-10-17 15:45:53,292 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:46:00,489 epoch 2 - iter 89/894 - loss 0.23639322 - time (sec): 7.19 - samples/sec: 1197.73 - lr: 0.000049 - momentum: 0.000000 |
|
2023-10-17 15:46:08,042 epoch 2 - iter 178/894 - loss 0.20566560 - time (sec): 14.75 - samples/sec: 1141.12 - lr: 0.000049 - momentum: 0.000000 |
|
2023-10-17 15:46:15,151 epoch 2 - iter 267/894 - loss 0.20004145 - time (sec): 21.85 - samples/sec: 1156.49 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-17 15:46:22,373 epoch 2 - iter 356/894 - loss 0.18486982 - time (sec): 29.08 - samples/sec: 1166.08 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-17 15:46:29,598 epoch 2 - iter 445/894 - loss 0.17676887 - time (sec): 36.30 - samples/sec: 1166.69 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-17 15:46:36,817 epoch 2 - iter 534/894 - loss 0.17708823 - time (sec): 43.52 - samples/sec: 1184.92 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-17 15:46:44,026 epoch 2 - iter 623/894 - loss 0.17121058 - time (sec): 50.73 - samples/sec: 1188.24 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-17 15:46:51,313 epoch 2 - iter 712/894 - loss 0.16652271 - time (sec): 58.02 - samples/sec: 1195.63 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-17 15:46:58,497 epoch 2 - iter 801/894 - loss 0.16303052 - time (sec): 65.20 - samples/sec: 1184.14 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-17 15:47:05,835 epoch 2 - iter 890/894 - loss 0.15787277 - time (sec): 72.54 - samples/sec: 1188.83 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-17 15:47:06,145 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:47:06,146 EPOCH 2 done: loss 0.1579 - lr: 0.000044 |
|
2023-10-17 15:47:17,287 DEV : loss 0.14334321022033691 - f1-score (micro avg) 0.7085 |
|
2023-10-17 15:47:17,354 saving best model |
|
2023-10-17 15:47:18,820 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:47:26,280 epoch 3 - iter 89/894 - loss 0.07813350 - time (sec): 7.46 - samples/sec: 1282.70 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-17 15:47:33,860 epoch 3 - iter 178/894 - loss 0.09913616 - time (sec): 15.04 - samples/sec: 1249.92 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-17 15:47:41,689 epoch 3 - iter 267/894 - loss 0.10793971 - time (sec): 22.86 - samples/sec: 1173.68 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-17 15:47:49,341 epoch 3 - iter 356/894 - loss 0.10704836 - time (sec): 30.52 - samples/sec: 1139.29 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-17 15:47:56,425 epoch 3 - iter 445/894 - loss 0.10184390 - time (sec): 37.60 - samples/sec: 1144.76 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-17 15:48:03,494 epoch 3 - iter 534/894 - loss 0.10054332 - time (sec): 44.67 - samples/sec: 1143.14 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-17 15:48:10,617 epoch 3 - iter 623/894 - loss 0.09942243 - time (sec): 51.79 - samples/sec: 1145.24 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-17 15:48:17,781 epoch 3 - iter 712/894 - loss 0.10174860 - time (sec): 58.96 - samples/sec: 1161.79 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-17 15:48:24,921 epoch 3 - iter 801/894 - loss 0.10063278 - time (sec): 66.10 - samples/sec: 1171.38 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-17 15:48:32,239 epoch 3 - iter 890/894 - loss 0.09898124 - time (sec): 73.42 - samples/sec: 1174.64 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-17 15:48:32,558 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:48:32,559 EPOCH 3 done: loss 0.0991 - lr: 0.000039 |
|
2023-10-17 15:48:43,839 DEV : loss 0.1510310173034668 - f1-score (micro avg) 0.7216 |
|
2023-10-17 15:48:43,898 saving best model |
|
2023-10-17 15:48:45,360 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:48:52,496 epoch 4 - iter 89/894 - loss 0.07471403 - time (sec): 7.13 - samples/sec: 1171.78 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-17 15:48:59,548 epoch 4 - iter 178/894 - loss 0.07152783 - time (sec): 14.18 - samples/sec: 1174.20 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-17 15:49:06,441 epoch 4 - iter 267/894 - loss 0.06660839 - time (sec): 21.08 - samples/sec: 1147.78 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-17 15:49:13,392 epoch 4 - iter 356/894 - loss 0.06963329 - time (sec): 28.03 - samples/sec: 1179.18 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-17 15:49:20,860 epoch 4 - iter 445/894 - loss 0.07210417 - time (sec): 35.50 - samples/sec: 1226.25 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-17 15:49:27,936 epoch 4 - iter 534/894 - loss 0.06863732 - time (sec): 42.57 - samples/sec: 1214.14 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-17 15:49:34,875 epoch 4 - iter 623/894 - loss 0.06728191 - time (sec): 49.51 - samples/sec: 1222.35 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-17 15:49:41,896 epoch 4 - iter 712/894 - loss 0.06607071 - time (sec): 56.53 - samples/sec: 1227.05 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-17 15:49:49,075 epoch 4 - iter 801/894 - loss 0.06540782 - time (sec): 63.71 - samples/sec: 1219.84 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-17 15:49:56,132 epoch 4 - iter 890/894 - loss 0.06487201 - time (sec): 70.77 - samples/sec: 1218.20 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-17 15:49:56,434 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:49:56,435 EPOCH 4 done: loss 0.0649 - lr: 0.000033 |
|
2023-10-17 15:50:07,665 DEV : loss 0.18753261864185333 - f1-score (micro avg) 0.7598 |
|
2023-10-17 15:50:07,723 saving best model |
|
2023-10-17 15:50:09,202 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:50:16,314 epoch 5 - iter 89/894 - loss 0.04554912 - time (sec): 7.11 - samples/sec: 1258.23 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-17 15:50:23,393 epoch 5 - iter 178/894 - loss 0.04649557 - time (sec): 14.19 - samples/sec: 1242.98 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-17 15:50:30,683 epoch 5 - iter 267/894 - loss 0.04140939 - time (sec): 21.48 - samples/sec: 1238.00 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-17 15:50:37,854 epoch 5 - iter 356/894 - loss 0.04138492 - time (sec): 28.65 - samples/sec: 1204.31 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-17 15:50:45,123 epoch 5 - iter 445/894 - loss 0.05411284 - time (sec): 35.92 - samples/sec: 1222.37 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-17 15:50:52,169 epoch 5 - iter 534/894 - loss 0.05080553 - time (sec): 42.96 - samples/sec: 1211.48 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-17 15:50:59,144 epoch 5 - iter 623/894 - loss 0.04833544 - time (sec): 49.94 - samples/sec: 1212.08 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 15:51:06,093 epoch 5 - iter 712/894 - loss 0.04820027 - time (sec): 56.89 - samples/sec: 1215.38 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 15:51:13,045 epoch 5 - iter 801/894 - loss 0.04783057 - time (sec): 63.84 - samples/sec: 1215.05 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 15:51:19,921 epoch 5 - iter 890/894 - loss 0.04664670 - time (sec): 70.71 - samples/sec: 1220.16 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 15:51:20,217 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:51:20,217 EPOCH 5 done: loss 0.0465 - lr: 0.000028 |
|
2023-10-17 15:51:31,594 DEV : loss 0.22483567893505096 - f1-score (micro avg) 0.7747 |
|
2023-10-17 15:51:31,657 saving best model |
|
2023-10-17 15:51:33,125 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:51:40,106 epoch 6 - iter 89/894 - loss 0.02224176 - time (sec): 6.98 - samples/sec: 1197.71 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 15:51:47,068 epoch 6 - iter 178/894 - loss 0.02790633 - time (sec): 13.94 - samples/sec: 1212.37 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 15:51:53,957 epoch 6 - iter 267/894 - loss 0.03349122 - time (sec): 20.83 - samples/sec: 1237.02 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 15:52:00,898 epoch 6 - iter 356/894 - loss 0.03376256 - time (sec): 27.77 - samples/sec: 1243.48 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 15:52:07,970 epoch 6 - iter 445/894 - loss 0.03080036 - time (sec): 34.84 - samples/sec: 1250.73 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 15:52:14,857 epoch 6 - iter 534/894 - loss 0.03219363 - time (sec): 41.73 - samples/sec: 1230.66 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 15:52:22,139 epoch 6 - iter 623/894 - loss 0.03300328 - time (sec): 49.01 - samples/sec: 1246.28 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 15:52:29,253 epoch 6 - iter 712/894 - loss 0.03197960 - time (sec): 56.12 - samples/sec: 1241.63 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 15:52:36,303 epoch 6 - iter 801/894 - loss 0.03059184 - time (sec): 63.17 - samples/sec: 1237.76 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 15:52:43,298 epoch 6 - iter 890/894 - loss 0.02966133 - time (sec): 70.17 - samples/sec: 1228.24 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 15:52:43,613 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:52:43,613 EPOCH 6 done: loss 0.0297 - lr: 0.000022 |
|
2023-10-17 15:52:54,626 DEV : loss 0.23626892268657684 - f1-score (micro avg) 0.7682 |
|
2023-10-17 15:52:54,688 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:53:01,842 epoch 7 - iter 89/894 - loss 0.01453486 - time (sec): 7.15 - samples/sec: 1341.37 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 15:53:08,799 epoch 7 - iter 178/894 - loss 0.01426282 - time (sec): 14.11 - samples/sec: 1278.77 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 15:53:16,409 epoch 7 - iter 267/894 - loss 0.01170213 - time (sec): 21.72 - samples/sec: 1236.79 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 15:53:23,894 epoch 7 - iter 356/894 - loss 0.01502251 - time (sec): 29.20 - samples/sec: 1246.83 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 15:53:30,914 epoch 7 - iter 445/894 - loss 0.01592358 - time (sec): 36.22 - samples/sec: 1241.76 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 15:53:37,929 epoch 7 - iter 534/894 - loss 0.01506050 - time (sec): 43.24 - samples/sec: 1227.46 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 15:53:44,802 epoch 7 - iter 623/894 - loss 0.01569285 - time (sec): 50.11 - samples/sec: 1225.12 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 15:53:51,714 epoch 7 - iter 712/894 - loss 0.01598849 - time (sec): 57.02 - samples/sec: 1229.78 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 15:53:58,543 epoch 7 - iter 801/894 - loss 0.01505426 - time (sec): 63.85 - samples/sec: 1225.65 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 15:54:05,377 epoch 7 - iter 890/894 - loss 0.01634400 - time (sec): 70.69 - samples/sec: 1219.04 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 15:54:05,690 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:54:05,690 EPOCH 7 done: loss 0.0163 - lr: 0.000017 |
|
2023-10-17 15:54:17,064 DEV : loss 0.2253272533416748 - f1-score (micro avg) 0.7808 |
|
2023-10-17 15:54:17,123 saving best model |
|
2023-10-17 15:54:18,629 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:54:25,480 epoch 8 - iter 89/894 - loss 0.01251303 - time (sec): 6.85 - samples/sec: 1215.36 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 15:54:32,319 epoch 8 - iter 178/894 - loss 0.01211563 - time (sec): 13.69 - samples/sec: 1204.97 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 15:54:39,189 epoch 8 - iter 267/894 - loss 0.01317594 - time (sec): 20.56 - samples/sec: 1191.22 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 15:54:46,270 epoch 8 - iter 356/894 - loss 0.01525423 - time (sec): 27.64 - samples/sec: 1207.62 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 15:54:53,283 epoch 8 - iter 445/894 - loss 0.01504989 - time (sec): 34.65 - samples/sec: 1219.32 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 15:55:00,195 epoch 8 - iter 534/894 - loss 0.01361242 - time (sec): 41.56 - samples/sec: 1214.36 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 15:55:07,127 epoch 8 - iter 623/894 - loss 0.01464410 - time (sec): 48.49 - samples/sec: 1212.03 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 15:55:13,952 epoch 8 - iter 712/894 - loss 0.01438402 - time (sec): 55.32 - samples/sec: 1213.86 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 15:55:20,917 epoch 8 - iter 801/894 - loss 0.01467751 - time (sec): 62.28 - samples/sec: 1230.73 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 15:55:27,954 epoch 8 - iter 890/894 - loss 0.01365605 - time (sec): 69.32 - samples/sec: 1244.28 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 15:55:28,260 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:55:28,260 EPOCH 8 done: loss 0.0136 - lr: 0.000011 |
|
2023-10-17 15:55:39,303 DEV : loss 0.25934016704559326 - f1-score (micro avg) 0.7752 |
|
2023-10-17 15:55:39,365 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:55:46,115 epoch 9 - iter 89/894 - loss 0.00235891 - time (sec): 6.75 - samples/sec: 1149.86 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 15:55:52,881 epoch 9 - iter 178/894 - loss 0.00468143 - time (sec): 13.51 - samples/sec: 1194.17 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 15:55:59,717 epoch 9 - iter 267/894 - loss 0.00575664 - time (sec): 20.35 - samples/sec: 1207.81 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 15:56:06,612 epoch 9 - iter 356/894 - loss 0.00558437 - time (sec): 27.25 - samples/sec: 1214.75 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 15:56:14,079 epoch 9 - iter 445/894 - loss 0.00553854 - time (sec): 34.71 - samples/sec: 1250.09 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 15:56:21,118 epoch 9 - iter 534/894 - loss 0.00506110 - time (sec): 41.75 - samples/sec: 1259.30 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 15:56:28,035 epoch 9 - iter 623/894 - loss 0.00692322 - time (sec): 48.67 - samples/sec: 1247.83 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 15:56:35,176 epoch 9 - iter 712/894 - loss 0.00657232 - time (sec): 55.81 - samples/sec: 1232.76 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 15:56:42,129 epoch 9 - iter 801/894 - loss 0.00603686 - time (sec): 62.76 - samples/sec: 1233.58 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 15:56:49,231 epoch 9 - iter 890/894 - loss 0.00573165 - time (sec): 69.86 - samples/sec: 1231.63 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 15:56:49,545 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:56:49,545 EPOCH 9 done: loss 0.0057 - lr: 0.000006 |
|
2023-10-17 15:57:00,913 DEV : loss 0.27651283144950867 - f1-score (micro avg) 0.7847 |
|
2023-10-17 15:57:00,980 saving best model |
|
2023-10-17 15:57:02,455 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:57:09,482 epoch 10 - iter 89/894 - loss 0.00371495 - time (sec): 7.02 - samples/sec: 1226.07 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 15:57:16,473 epoch 10 - iter 178/894 - loss 0.00299072 - time (sec): 14.01 - samples/sec: 1198.78 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 15:57:23,793 epoch 10 - iter 267/894 - loss 0.00302717 - time (sec): 21.33 - samples/sec: 1246.43 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 15:57:30,750 epoch 10 - iter 356/894 - loss 0.00372958 - time (sec): 28.29 - samples/sec: 1216.31 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 15:57:37,742 epoch 10 - iter 445/894 - loss 0.00318995 - time (sec): 35.28 - samples/sec: 1229.18 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 15:57:44,789 epoch 10 - iter 534/894 - loss 0.00338575 - time (sec): 42.33 - samples/sec: 1235.47 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 15:57:51,733 epoch 10 - iter 623/894 - loss 0.00351432 - time (sec): 49.27 - samples/sec: 1229.50 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 15:57:59,331 epoch 10 - iter 712/894 - loss 0.00332563 - time (sec): 56.87 - samples/sec: 1223.36 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 15:58:06,294 epoch 10 - iter 801/894 - loss 0.00327091 - time (sec): 63.83 - samples/sec: 1212.54 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 15:58:13,380 epoch 10 - iter 890/894 - loss 0.00345596 - time (sec): 70.92 - samples/sec: 1216.40 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-17 15:58:13,697 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:58:13,698 EPOCH 10 done: loss 0.0034 - lr: 0.000000 |
|
2023-10-17 15:58:25,218 DEV : loss 0.27436527609825134 - f1-score (micro avg) 0.7904 |
|
2023-10-17 15:58:25,278 saving best model |
|
2023-10-17 15:58:27,359 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 15:58:27,361 Loading model from best epoch ... |
|
2023-10-17 15:58:30,392 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time |
|
2023-10-17 15:58:36,273 |
|
Results: |
|
- F-score (micro) 0.7748 |
|
- F-score (macro) 0.675 |
|
- Accuracy 0.6531 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
loc 0.8648 0.8909 0.8777 596 |
|
pers 0.7072 0.7688 0.7367 333 |
|
org 0.5462 0.4924 0.5179 132 |
|
prod 0.6444 0.4394 0.5225 66 |
|
time 0.7059 0.7347 0.7200 49 |
|
|
|
micro avg 0.7699 0.7798 0.7748 1176 |
|
macro avg 0.6937 0.6652 0.6750 1176 |
|
weighted avg 0.7654 0.7798 0.7709 1176 |
|
|
|
2023-10-17 15:58:36,273 ---------------------------------------------------------------------------------------------------- |
|
|