Upload ./training.log with huggingface_hub
Browse files- training.log +508 -0
training.log
ADDED
@@ -0,0 +1,508 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-23 23:00:28,649 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-23 23:00:28,650 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-23 23:00:28,651 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-23 23:00:28,651 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
|
316 |
+
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
|
317 |
+
2023-10-23 23:00:28,651 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-23 23:00:28,651 Train: 3575 sentences
|
319 |
+
2023-10-23 23:00:28,651 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-23 23:00:28,651 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-23 23:00:28,651 Training Params:
|
322 |
+
2023-10-23 23:00:28,651 - learning_rate: "3e-05"
|
323 |
+
2023-10-23 23:00:28,651 - mini_batch_size: "8"
|
324 |
+
2023-10-23 23:00:28,651 - max_epochs: "10"
|
325 |
+
2023-10-23 23:00:28,651 - shuffle: "True"
|
326 |
+
2023-10-23 23:00:28,651 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-23 23:00:28,651 Plugins:
|
328 |
+
2023-10-23 23:00:28,651 - TensorboardLogger
|
329 |
+
2023-10-23 23:00:28,651 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-23 23:00:28,651 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-23 23:00:28,651 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-23 23:00:28,651 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-23 23:00:28,651 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-23 23:00:28,651 Computation:
|
335 |
+
2023-10-23 23:00:28,651 - compute on device: cuda:0
|
336 |
+
2023-10-23 23:00:28,651 - embedding storage: none
|
337 |
+
2023-10-23 23:00:28,651 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-23 23:00:28,651 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5"
|
339 |
+
2023-10-23 23:00:28,651 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-23 23:00:28,651 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-23 23:00:28,651 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-23 23:00:32,746 epoch 1 - iter 44/447 - loss 2.52602023 - time (sec): 4.09 - samples/sec: 2195.25 - lr: 0.000003 - momentum: 0.000000
|
343 |
+
2023-10-23 23:00:36,618 epoch 1 - iter 88/447 - loss 1.70182761 - time (sec): 7.97 - samples/sec: 2171.87 - lr: 0.000006 - momentum: 0.000000
|
344 |
+
2023-10-23 23:00:40,574 epoch 1 - iter 132/447 - loss 1.31473468 - time (sec): 11.92 - samples/sec: 2185.11 - lr: 0.000009 - momentum: 0.000000
|
345 |
+
2023-10-23 23:00:44,249 epoch 1 - iter 176/447 - loss 1.09744513 - time (sec): 15.60 - samples/sec: 2207.06 - lr: 0.000012 - momentum: 0.000000
|
346 |
+
2023-10-23 23:00:48,800 epoch 1 - iter 220/447 - loss 0.92998358 - time (sec): 20.15 - samples/sec: 2172.71 - lr: 0.000015 - momentum: 0.000000
|
347 |
+
2023-10-23 23:00:52,526 epoch 1 - iter 264/447 - loss 0.83386539 - time (sec): 23.87 - samples/sec: 2166.96 - lr: 0.000018 - momentum: 0.000000
|
348 |
+
2023-10-23 23:00:56,473 epoch 1 - iter 308/447 - loss 0.75611333 - time (sec): 27.82 - samples/sec: 2152.51 - lr: 0.000021 - momentum: 0.000000
|
349 |
+
2023-10-23 23:01:00,214 epoch 1 - iter 352/447 - loss 0.69739560 - time (sec): 31.56 - samples/sec: 2134.46 - lr: 0.000024 - momentum: 0.000000
|
350 |
+
2023-10-23 23:01:04,333 epoch 1 - iter 396/447 - loss 0.64562676 - time (sec): 35.68 - samples/sec: 2144.31 - lr: 0.000027 - momentum: 0.000000
|
351 |
+
2023-10-23 23:01:08,462 epoch 1 - iter 440/447 - loss 0.59937392 - time (sec): 39.81 - samples/sec: 2143.25 - lr: 0.000029 - momentum: 0.000000
|
352 |
+
2023-10-23 23:01:09,047 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-23 23:01:09,048 EPOCH 1 done: loss 0.5937 - lr: 0.000029
|
354 |
+
2023-10-23 23:01:13,861 DEV : loss 0.19523081183433533 - f1-score (micro avg) 0.602
|
355 |
+
2023-10-23 23:01:13,882 saving best model
|
356 |
+
2023-10-23 23:01:14,355 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-23 23:01:18,559 epoch 2 - iter 44/447 - loss 0.17169884 - time (sec): 4.20 - samples/sec: 2020.76 - lr: 0.000030 - momentum: 0.000000
|
358 |
+
2023-10-23 23:01:22,581 epoch 2 - iter 88/447 - loss 0.17647433 - time (sec): 8.22 - samples/sec: 2101.90 - lr: 0.000029 - momentum: 0.000000
|
359 |
+
2023-10-23 23:01:26,617 epoch 2 - iter 132/447 - loss 0.16565784 - time (sec): 12.26 - samples/sec: 2086.54 - lr: 0.000029 - momentum: 0.000000
|
360 |
+
2023-10-23 23:01:30,763 epoch 2 - iter 176/447 - loss 0.16430118 - time (sec): 16.41 - samples/sec: 2107.26 - lr: 0.000029 - momentum: 0.000000
|
361 |
+
2023-10-23 23:01:34,549 epoch 2 - iter 220/447 - loss 0.15912237 - time (sec): 20.19 - samples/sec: 2116.34 - lr: 0.000028 - momentum: 0.000000
|
362 |
+
2023-10-23 23:01:38,548 epoch 2 - iter 264/447 - loss 0.15555409 - time (sec): 24.19 - samples/sec: 2112.73 - lr: 0.000028 - momentum: 0.000000
|
363 |
+
2023-10-23 23:01:42,387 epoch 2 - iter 308/447 - loss 0.15167650 - time (sec): 28.03 - samples/sec: 2126.29 - lr: 0.000028 - momentum: 0.000000
|
364 |
+
2023-10-23 23:01:46,396 epoch 2 - iter 352/447 - loss 0.14567258 - time (sec): 32.04 - samples/sec: 2135.14 - lr: 0.000027 - momentum: 0.000000
|
365 |
+
2023-10-23 23:01:50,342 epoch 2 - iter 396/447 - loss 0.14264947 - time (sec): 35.99 - samples/sec: 2127.62 - lr: 0.000027 - momentum: 0.000000
|
366 |
+
2023-10-23 23:01:54,245 epoch 2 - iter 440/447 - loss 0.13821798 - time (sec): 39.89 - samples/sec: 2136.97 - lr: 0.000027 - momentum: 0.000000
|
367 |
+
2023-10-23 23:01:54,864 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-23 23:01:54,864 EPOCH 2 done: loss 0.1395 - lr: 0.000027
|
369 |
+
2023-10-23 23:02:01,346 DEV : loss 0.12295468896627426 - f1-score (micro avg) 0.7103
|
370 |
+
2023-10-23 23:02:01,366 saving best model
|
371 |
+
2023-10-23 23:02:01,953 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-23 23:02:06,309 epoch 3 - iter 44/447 - loss 0.09549111 - time (sec): 4.35 - samples/sec: 2195.36 - lr: 0.000026 - momentum: 0.000000
|
373 |
+
2023-10-23 23:02:10,254 epoch 3 - iter 88/447 - loss 0.07868123 - time (sec): 8.30 - samples/sec: 2242.07 - lr: 0.000026 - momentum: 0.000000
|
374 |
+
2023-10-23 23:02:14,277 epoch 3 - iter 132/447 - loss 0.08318832 - time (sec): 12.32 - samples/sec: 2209.09 - lr: 0.000026 - momentum: 0.000000
|
375 |
+
2023-10-23 23:02:17,984 epoch 3 - iter 176/447 - loss 0.07733080 - time (sec): 16.03 - samples/sec: 2198.38 - lr: 0.000025 - momentum: 0.000000
|
376 |
+
2023-10-23 23:02:22,352 epoch 3 - iter 220/447 - loss 0.07500939 - time (sec): 20.40 - samples/sec: 2181.80 - lr: 0.000025 - momentum: 0.000000
|
377 |
+
2023-10-23 23:02:26,654 epoch 3 - iter 264/447 - loss 0.07437472 - time (sec): 24.70 - samples/sec: 2171.11 - lr: 0.000025 - momentum: 0.000000
|
378 |
+
2023-10-23 23:02:30,577 epoch 3 - iter 308/447 - loss 0.07459318 - time (sec): 28.62 - samples/sec: 2157.01 - lr: 0.000024 - momentum: 0.000000
|
379 |
+
2023-10-23 23:02:34,258 epoch 3 - iter 352/447 - loss 0.07470733 - time (sec): 32.30 - samples/sec: 2137.56 - lr: 0.000024 - momentum: 0.000000
|
380 |
+
2023-10-23 23:02:38,173 epoch 3 - iter 396/447 - loss 0.07388045 - time (sec): 36.22 - samples/sec: 2148.46 - lr: 0.000024 - momentum: 0.000000
|
381 |
+
2023-10-23 23:02:41,938 epoch 3 - iter 440/447 - loss 0.07304330 - time (sec): 39.98 - samples/sec: 2136.97 - lr: 0.000023 - momentum: 0.000000
|
382 |
+
2023-10-23 23:02:42,478 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-23 23:02:42,479 EPOCH 3 done: loss 0.0728 - lr: 0.000023
|
384 |
+
2023-10-23 23:02:48,963 DEV : loss 0.15343354642391205 - f1-score (micro avg) 0.7489
|
385 |
+
2023-10-23 23:02:48,983 saving best model
|
386 |
+
2023-10-23 23:02:49,570 ----------------------------------------------------------------------------------------------------
|
387 |
+
2023-10-23 23:02:53,380 epoch 4 - iter 44/447 - loss 0.03471509 - time (sec): 3.81 - samples/sec: 2180.41 - lr: 0.000023 - momentum: 0.000000
|
388 |
+
2023-10-23 23:02:57,700 epoch 4 - iter 88/447 - loss 0.04095950 - time (sec): 8.13 - samples/sec: 2166.29 - lr: 0.000023 - momentum: 0.000000
|
389 |
+
2023-10-23 23:03:01,896 epoch 4 - iter 132/447 - loss 0.04313707 - time (sec): 12.33 - samples/sec: 2145.87 - lr: 0.000022 - momentum: 0.000000
|
390 |
+
2023-10-23 23:03:05,622 epoch 4 - iter 176/447 - loss 0.04217202 - time (sec): 16.05 - samples/sec: 2123.73 - lr: 0.000022 - momentum: 0.000000
|
391 |
+
2023-10-23 23:03:10,203 epoch 4 - iter 220/447 - loss 0.04425905 - time (sec): 20.63 - samples/sec: 2113.31 - lr: 0.000022 - momentum: 0.000000
|
392 |
+
2023-10-23 23:03:14,002 epoch 4 - iter 264/447 - loss 0.04327538 - time (sec): 24.43 - samples/sec: 2107.43 - lr: 0.000021 - momentum: 0.000000
|
393 |
+
2023-10-23 23:03:18,050 epoch 4 - iter 308/447 - loss 0.04558314 - time (sec): 28.48 - samples/sec: 2129.10 - lr: 0.000021 - momentum: 0.000000
|
394 |
+
2023-10-23 23:03:22,001 epoch 4 - iter 352/447 - loss 0.04373608 - time (sec): 32.43 - samples/sec: 2127.73 - lr: 0.000021 - momentum: 0.000000
|
395 |
+
2023-10-23 23:03:25,841 epoch 4 - iter 396/447 - loss 0.04253316 - time (sec): 36.27 - samples/sec: 2127.56 - lr: 0.000020 - momentum: 0.000000
|
396 |
+
2023-10-23 23:03:29,679 epoch 4 - iter 440/447 - loss 0.04399254 - time (sec): 40.11 - samples/sec: 2125.07 - lr: 0.000020 - momentum: 0.000000
|
397 |
+
2023-10-23 23:03:30,294 ----------------------------------------------------------------------------------------------------
|
398 |
+
2023-10-23 23:03:30,294 EPOCH 4 done: loss 0.0437 - lr: 0.000020
|
399 |
+
2023-10-23 23:03:36,776 DEV : loss 0.16440840065479279 - f1-score (micro avg) 0.7465
|
400 |
+
2023-10-23 23:03:36,796 ----------------------------------------------------------------------------------------------------
|
401 |
+
2023-10-23 23:03:40,718 epoch 5 - iter 44/447 - loss 0.03153993 - time (sec): 3.92 - samples/sec: 2183.07 - lr: 0.000020 - momentum: 0.000000
|
402 |
+
2023-10-23 23:03:45,031 epoch 5 - iter 88/447 - loss 0.03158561 - time (sec): 8.23 - samples/sec: 2117.98 - lr: 0.000019 - momentum: 0.000000
|
403 |
+
2023-10-23 23:03:48,851 epoch 5 - iter 132/447 - loss 0.03154475 - time (sec): 12.05 - samples/sec: 2134.16 - lr: 0.000019 - momentum: 0.000000
|
404 |
+
2023-10-23 23:03:52,601 epoch 5 - iter 176/447 - loss 0.02896412 - time (sec): 15.80 - samples/sec: 2134.56 - lr: 0.000019 - momentum: 0.000000
|
405 |
+
2023-10-23 23:03:56,655 epoch 5 - iter 220/447 - loss 0.02964248 - time (sec): 19.86 - samples/sec: 2123.94 - lr: 0.000018 - momentum: 0.000000
|
406 |
+
2023-10-23 23:04:00,713 epoch 5 - iter 264/447 - loss 0.02934625 - time (sec): 23.92 - samples/sec: 2115.14 - lr: 0.000018 - momentum: 0.000000
|
407 |
+
2023-10-23 23:04:04,358 epoch 5 - iter 308/447 - loss 0.02819574 - time (sec): 27.56 - samples/sec: 2124.76 - lr: 0.000018 - momentum: 0.000000
|
408 |
+
2023-10-23 23:04:08,764 epoch 5 - iter 352/447 - loss 0.03063596 - time (sec): 31.97 - samples/sec: 2126.05 - lr: 0.000017 - momentum: 0.000000
|
409 |
+
2023-10-23 23:04:12,599 epoch 5 - iter 396/447 - loss 0.02978320 - time (sec): 35.80 - samples/sec: 2137.51 - lr: 0.000017 - momentum: 0.000000
|
410 |
+
2023-10-23 23:04:16,554 epoch 5 - iter 440/447 - loss 0.02930160 - time (sec): 39.76 - samples/sec: 2141.01 - lr: 0.000017 - momentum: 0.000000
|
411 |
+
2023-10-23 23:04:17,157 ----------------------------------------------------------------------------------------------------
|
412 |
+
2023-10-23 23:04:17,157 EPOCH 5 done: loss 0.0292 - lr: 0.000017
|
413 |
+
2023-10-23 23:04:23,636 DEV : loss 0.18590261042118073 - f1-score (micro avg) 0.771
|
414 |
+
2023-10-23 23:04:23,656 saving best model
|
415 |
+
2023-10-23 23:04:24,245 ----------------------------------------------------------------------------------------------------
|
416 |
+
2023-10-23 23:04:28,359 epoch 6 - iter 44/447 - loss 0.02168377 - time (sec): 4.11 - samples/sec: 2005.67 - lr: 0.000016 - momentum: 0.000000
|
417 |
+
2023-10-23 23:04:32,535 epoch 6 - iter 88/447 - loss 0.02664472 - time (sec): 8.29 - samples/sec: 2046.54 - lr: 0.000016 - momentum: 0.000000
|
418 |
+
2023-10-23 23:04:37,101 epoch 6 - iter 132/447 - loss 0.02379201 - time (sec): 12.85 - samples/sec: 2069.01 - lr: 0.000016 - momentum: 0.000000
|
419 |
+
2023-10-23 23:04:40,881 epoch 6 - iter 176/447 - loss 0.02219099 - time (sec): 16.64 - samples/sec: 2088.60 - lr: 0.000015 - momentum: 0.000000
|
420 |
+
2023-10-23 23:04:44,787 epoch 6 - iter 220/447 - loss 0.02183849 - time (sec): 20.54 - samples/sec: 2102.02 - lr: 0.000015 - momentum: 0.000000
|
421 |
+
2023-10-23 23:04:48,657 epoch 6 - iter 264/447 - loss 0.02049396 - time (sec): 24.41 - samples/sec: 2109.29 - lr: 0.000015 - momentum: 0.000000
|
422 |
+
2023-10-23 23:04:52,413 epoch 6 - iter 308/447 - loss 0.02101667 - time (sec): 28.17 - samples/sec: 2106.25 - lr: 0.000014 - momentum: 0.000000
|
423 |
+
2023-10-23 23:04:56,108 epoch 6 - iter 352/447 - loss 0.01998352 - time (sec): 31.86 - samples/sec: 2107.46 - lr: 0.000014 - momentum: 0.000000
|
424 |
+
2023-10-23 23:05:00,274 epoch 6 - iter 396/447 - loss 0.02022647 - time (sec): 36.03 - samples/sec: 2113.02 - lr: 0.000014 - momentum: 0.000000
|
425 |
+
2023-10-23 23:05:04,211 epoch 6 - iter 440/447 - loss 0.02038921 - time (sec): 39.96 - samples/sec: 2131.51 - lr: 0.000013 - momentum: 0.000000
|
426 |
+
2023-10-23 23:05:04,873 ----------------------------------------------------------------------------------------------------
|
427 |
+
2023-10-23 23:05:04,874 EPOCH 6 done: loss 0.0206 - lr: 0.000013
|
428 |
+
2023-10-23 23:05:11,385 DEV : loss 0.2045108526945114 - f1-score (micro avg) 0.7576
|
429 |
+
2023-10-23 23:05:11,406 ----------------------------------------------------------------------------------------------------
|
430 |
+
2023-10-23 23:05:15,710 epoch 7 - iter 44/447 - loss 0.02004284 - time (sec): 4.30 - samples/sec: 2123.05 - lr: 0.000013 - momentum: 0.000000
|
431 |
+
2023-10-23 23:05:19,740 epoch 7 - iter 88/447 - loss 0.01541434 - time (sec): 8.33 - samples/sec: 2121.61 - lr: 0.000013 - momentum: 0.000000
|
432 |
+
2023-10-23 23:05:23,460 epoch 7 - iter 132/447 - loss 0.01587152 - time (sec): 12.05 - samples/sec: 2141.90 - lr: 0.000012 - momentum: 0.000000
|
433 |
+
2023-10-23 23:05:27,657 epoch 7 - iter 176/447 - loss 0.01550813 - time (sec): 16.25 - samples/sec: 2171.27 - lr: 0.000012 - momentum: 0.000000
|
434 |
+
2023-10-23 23:05:31,665 epoch 7 - iter 220/447 - loss 0.01526874 - time (sec): 20.26 - samples/sec: 2146.13 - lr: 0.000012 - momentum: 0.000000
|
435 |
+
2023-10-23 23:05:35,806 epoch 7 - iter 264/447 - loss 0.01545565 - time (sec): 24.40 - samples/sec: 2129.96 - lr: 0.000011 - momentum: 0.000000
|
436 |
+
2023-10-23 23:05:39,700 epoch 7 - iter 308/447 - loss 0.01438074 - time (sec): 28.29 - samples/sec: 2135.49 - lr: 0.000011 - momentum: 0.000000
|
437 |
+
2023-10-23 23:05:43,906 epoch 7 - iter 352/447 - loss 0.01391057 - time (sec): 32.50 - samples/sec: 2137.46 - lr: 0.000011 - momentum: 0.000000
|
438 |
+
2023-10-23 23:05:47,968 epoch 7 - iter 396/447 - loss 0.01352129 - time (sec): 36.56 - samples/sec: 2134.04 - lr: 0.000010 - momentum: 0.000000
|
439 |
+
2023-10-23 23:05:51,529 epoch 7 - iter 440/447 - loss 0.01375727 - time (sec): 40.12 - samples/sec: 2126.85 - lr: 0.000010 - momentum: 0.000000
|
440 |
+
2023-10-23 23:05:52,094 ----------------------------------------------------------------------------------------------------
|
441 |
+
2023-10-23 23:05:52,095 EPOCH 7 done: loss 0.0138 - lr: 0.000010
|
442 |
+
2023-10-23 23:05:58,309 DEV : loss 0.22162960469722748 - f1-score (micro avg) 0.7836
|
443 |
+
2023-10-23 23:05:58,329 saving best model
|
444 |
+
2023-10-23 23:05:59,227 ----------------------------------------------------------------------------------------------------
|
445 |
+
2023-10-23 23:06:03,130 epoch 8 - iter 44/447 - loss 0.00338610 - time (sec): 3.90 - samples/sec: 2177.22 - lr: 0.000010 - momentum: 0.000000
|
446 |
+
2023-10-23 23:06:07,503 epoch 8 - iter 88/447 - loss 0.00649872 - time (sec): 8.28 - samples/sec: 2124.18 - lr: 0.000009 - momentum: 0.000000
|
447 |
+
2023-10-23 23:06:11,262 epoch 8 - iter 132/447 - loss 0.00844255 - time (sec): 12.03 - samples/sec: 2139.75 - lr: 0.000009 - momentum: 0.000000
|
448 |
+
2023-10-23 23:06:15,220 epoch 8 - iter 176/447 - loss 0.00810306 - time (sec): 15.99 - samples/sec: 2115.00 - lr: 0.000009 - momentum: 0.000000
|
449 |
+
2023-10-23 23:06:19,137 epoch 8 - iter 220/447 - loss 0.00775609 - time (sec): 19.91 - samples/sec: 2119.19 - lr: 0.000008 - momentum: 0.000000
|
450 |
+
2023-10-23 23:06:22,765 epoch 8 - iter 264/447 - loss 0.00753910 - time (sec): 23.54 - samples/sec: 2132.64 - lr: 0.000008 - momentum: 0.000000
|
451 |
+
2023-10-23 23:06:26,708 epoch 8 - iter 308/447 - loss 0.00742374 - time (sec): 27.48 - samples/sec: 2137.96 - lr: 0.000008 - momentum: 0.000000
|
452 |
+
2023-10-23 23:06:31,358 epoch 8 - iter 352/447 - loss 0.00757262 - time (sec): 32.13 - samples/sec: 2125.85 - lr: 0.000007 - momentum: 0.000000
|
453 |
+
2023-10-23 23:06:35,232 epoch 8 - iter 396/447 - loss 0.00893999 - time (sec): 36.00 - samples/sec: 2144.09 - lr: 0.000007 - momentum: 0.000000
|
454 |
+
2023-10-23 23:06:39,044 epoch 8 - iter 440/447 - loss 0.00911259 - time (sec): 39.82 - samples/sec: 2143.63 - lr: 0.000007 - momentum: 0.000000
|
455 |
+
2023-10-23 23:06:39,653 ----------------------------------------------------------------------------------------------------
|
456 |
+
2023-10-23 23:06:39,653 EPOCH 8 done: loss 0.0094 - lr: 0.000007
|
457 |
+
2023-10-23 23:06:45,867 DEV : loss 0.2305288016796112 - f1-score (micro avg) 0.7771
|
458 |
+
2023-10-23 23:06:45,887 ----------------------------------------------------------------------------------------------------
|
459 |
+
2023-10-23 23:06:49,797 epoch 9 - iter 44/447 - loss 0.00749318 - time (sec): 3.91 - samples/sec: 2132.77 - lr: 0.000006 - momentum: 0.000000
|
460 |
+
2023-10-23 23:06:54,055 epoch 9 - iter 88/447 - loss 0.00578018 - time (sec): 8.17 - samples/sec: 2106.92 - lr: 0.000006 - momentum: 0.000000
|
461 |
+
2023-10-23 23:06:58,041 epoch 9 - iter 132/447 - loss 0.00513309 - time (sec): 12.15 - samples/sec: 2160.03 - lr: 0.000006 - momentum: 0.000000
|
462 |
+
2023-10-23 23:07:02,056 epoch 9 - iter 176/447 - loss 0.00514188 - time (sec): 16.17 - samples/sec: 2121.05 - lr: 0.000005 - momentum: 0.000000
|
463 |
+
2023-10-23 23:07:05,872 epoch 9 - iter 220/447 - loss 0.00441923 - time (sec): 19.98 - samples/sec: 2141.34 - lr: 0.000005 - momentum: 0.000000
|
464 |
+
2023-10-23 23:07:09,433 epoch 9 - iter 264/447 - loss 0.00540403 - time (sec): 23.54 - samples/sec: 2134.74 - lr: 0.000005 - momentum: 0.000000
|
465 |
+
2023-10-23 23:07:13,624 epoch 9 - iter 308/447 - loss 0.00549172 - time (sec): 27.74 - samples/sec: 2130.38 - lr: 0.000004 - momentum: 0.000000
|
466 |
+
2023-10-23 23:07:17,938 epoch 9 - iter 352/447 - loss 0.00557974 - time (sec): 32.05 - samples/sec: 2144.11 - lr: 0.000004 - momentum: 0.000000
|
467 |
+
2023-10-23 23:07:21,891 epoch 9 - iter 396/447 - loss 0.00615603 - time (sec): 36.00 - samples/sec: 2130.07 - lr: 0.000004 - momentum: 0.000000
|
468 |
+
2023-10-23 23:07:25,987 epoch 9 - iter 440/447 - loss 0.00622433 - time (sec): 40.10 - samples/sec: 2123.91 - lr: 0.000003 - momentum: 0.000000
|
469 |
+
2023-10-23 23:07:26,557 ----------------------------------------------------------------------------------------------------
|
470 |
+
2023-10-23 23:07:26,557 EPOCH 9 done: loss 0.0061 - lr: 0.000003
|
471 |
+
2023-10-23 23:07:32,804 DEV : loss 0.24391140043735504 - f1-score (micro avg) 0.7819
|
472 |
+
2023-10-23 23:07:32,824 ----------------------------------------------------------------------------------------------------
|
473 |
+
2023-10-23 23:07:36,558 epoch 10 - iter 44/447 - loss 0.00893320 - time (sec): 3.73 - samples/sec: 2136.89 - lr: 0.000003 - momentum: 0.000000
|
474 |
+
2023-10-23 23:07:40,288 epoch 10 - iter 88/447 - loss 0.00533915 - time (sec): 7.46 - samples/sec: 2130.68 - lr: 0.000003 - momentum: 0.000000
|
475 |
+
2023-10-23 23:07:44,363 epoch 10 - iter 132/447 - loss 0.00466202 - time (sec): 11.54 - samples/sec: 2152.54 - lr: 0.000002 - momentum: 0.000000
|
476 |
+
2023-10-23 23:07:48,688 epoch 10 - iter 176/447 - loss 0.00398884 - time (sec): 15.86 - samples/sec: 2135.03 - lr: 0.000002 - momentum: 0.000000
|
477 |
+
2023-10-23 23:07:52,909 epoch 10 - iter 220/447 - loss 0.00318742 - time (sec): 20.08 - samples/sec: 2136.60 - lr: 0.000002 - momentum: 0.000000
|
478 |
+
2023-10-23 23:07:57,023 epoch 10 - iter 264/447 - loss 0.00288008 - time (sec): 24.20 - samples/sec: 2115.28 - lr: 0.000001 - momentum: 0.000000
|
479 |
+
2023-10-23 23:08:00,749 epoch 10 - iter 308/447 - loss 0.00336446 - time (sec): 27.92 - samples/sec: 2121.73 - lr: 0.000001 - momentum: 0.000000
|
480 |
+
2023-10-23 23:08:04,576 epoch 10 - iter 352/447 - loss 0.00326997 - time (sec): 31.75 - samples/sec: 2122.19 - lr: 0.000001 - momentum: 0.000000
|
481 |
+
2023-10-23 23:08:08,617 epoch 10 - iter 396/447 - loss 0.00380379 - time (sec): 35.79 - samples/sec: 2130.28 - lr: 0.000000 - momentum: 0.000000
|
482 |
+
2023-10-23 23:08:12,964 epoch 10 - iter 440/447 - loss 0.00399744 - time (sec): 40.14 - samples/sec: 2118.14 - lr: 0.000000 - momentum: 0.000000
|
483 |
+
2023-10-23 23:08:13,600 ----------------------------------------------------------------------------------------------------
|
484 |
+
2023-10-23 23:08:13,601 EPOCH 10 done: loss 0.0039 - lr: 0.000000
|
485 |
+
2023-10-23 23:08:19,844 DEV : loss 0.24326062202453613 - f1-score (micro avg) 0.7825
|
486 |
+
2023-10-23 23:08:20,336 ----------------------------------------------------------------------------------------------------
|
487 |
+
2023-10-23 23:08:20,337 Loading model from best epoch ...
|
488 |
+
2023-10-23 23:08:22,007 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
|
489 |
+
2023-10-23 23:08:26,848
|
490 |
+
Results:
|
491 |
+
- F-score (micro) 0.7342
|
492 |
+
- F-score (macro) 0.6411
|
493 |
+
- Accuracy 0.5989
|
494 |
+
|
495 |
+
By class:
|
496 |
+
precision recall f1-score support
|
497 |
+
|
498 |
+
loc 0.7823 0.8624 0.8204 596
|
499 |
+
pers 0.6778 0.7327 0.7042 333
|
500 |
+
org 0.5625 0.4773 0.5164 132
|
501 |
+
prod 0.5510 0.4091 0.4696 66
|
502 |
+
time 0.7174 0.6735 0.6947 49
|
503 |
+
|
504 |
+
micro avg 0.7198 0.7491 0.7342 1176
|
505 |
+
macro avg 0.6582 0.6310 0.6411 1176
|
506 |
+
weighted avg 0.7124 0.7491 0.7285 1176
|
507 |
+
|
508 |
+
2023-10-23 23:08:26,848 ----------------------------------------------------------------------------------------------------
|