File size: 36,889 Bytes
6625a36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
2023-10-23 19:51:00,417 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:00,418 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(64001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(6): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(7): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(8): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(9): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(10): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(11): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=25, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-23 19:51:00,418 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:00,418 MultiCorpus: 966 train + 219 dev + 204 test sentences
- NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-23 19:51:00,418 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:00,418 Train: 966 sentences
2023-10-23 19:51:00,418 (train_with_dev=False, train_with_test=False)
2023-10-23 19:51:00,418 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:00,418 Training Params:
2023-10-23 19:51:00,418 - learning_rate: "3e-05"
2023-10-23 19:51:00,418 - mini_batch_size: "4"
2023-10-23 19:51:00,418 - max_epochs: "10"
2023-10-23 19:51:00,418 - shuffle: "True"
2023-10-23 19:51:00,418 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:00,418 Plugins:
2023-10-23 19:51:00,418 - TensorboardLogger
2023-10-23 19:51:00,418 - LinearScheduler | warmup_fraction: '0.1'
2023-10-23 19:51:00,418 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:00,418 Final evaluation on model from best epoch (best-model.pt)
2023-10-23 19:51:00,418 - metric: "('micro avg', 'f1-score')"
2023-10-23 19:51:00,419 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:00,419 Computation:
2023-10-23 19:51:00,419 - compute on device: cuda:0
2023-10-23 19:51:00,419 - embedding storage: none
2023-10-23 19:51:00,419 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:00,419 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-23 19:51:00,419 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:00,419 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:00,419 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-23 19:51:01,874 epoch 1 - iter 24/242 - loss 3.19223754 - time (sec): 1.45 - samples/sec: 1580.94 - lr: 0.000003 - momentum: 0.000000
2023-10-23 19:51:03,430 epoch 1 - iter 48/242 - loss 2.40588811 - time (sec): 3.01 - samples/sec: 1709.78 - lr: 0.000006 - momentum: 0.000000
2023-10-23 19:51:04,914 epoch 1 - iter 72/242 - loss 1.84035746 - time (sec): 4.49 - samples/sec: 1664.08 - lr: 0.000009 - momentum: 0.000000
2023-10-23 19:51:06,427 epoch 1 - iter 96/242 - loss 1.51170565 - time (sec): 6.01 - samples/sec: 1655.46 - lr: 0.000012 - momentum: 0.000000
2023-10-23 19:51:07,973 epoch 1 - iter 120/242 - loss 1.31512225 - time (sec): 7.55 - samples/sec: 1645.64 - lr: 0.000015 - momentum: 0.000000
2023-10-23 19:51:09,511 epoch 1 - iter 144/242 - loss 1.18607233 - time (sec): 9.09 - samples/sec: 1622.96 - lr: 0.000018 - momentum: 0.000000
2023-10-23 19:51:11,033 epoch 1 - iter 168/242 - loss 1.06918175 - time (sec): 10.61 - samples/sec: 1627.64 - lr: 0.000021 - momentum: 0.000000
2023-10-23 19:51:12,551 epoch 1 - iter 192/242 - loss 0.97368169 - time (sec): 12.13 - samples/sec: 1625.95 - lr: 0.000024 - momentum: 0.000000
2023-10-23 19:51:14,111 epoch 1 - iter 216/242 - loss 0.89392525 - time (sec): 13.69 - samples/sec: 1619.11 - lr: 0.000027 - momentum: 0.000000
2023-10-23 19:51:15,587 epoch 1 - iter 240/242 - loss 0.82808428 - time (sec): 15.17 - samples/sec: 1614.38 - lr: 0.000030 - momentum: 0.000000
2023-10-23 19:51:15,708 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:15,708 EPOCH 1 done: loss 0.8216 - lr: 0.000030
2023-10-23 19:51:16,520 DEV : loss 0.1904076784849167 - f1-score (micro avg) 0.625
2023-10-23 19:51:16,525 saving best model
2023-10-23 19:51:16,994 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:18,513 epoch 2 - iter 24/242 - loss 0.22047277 - time (sec): 1.52 - samples/sec: 1646.87 - lr: 0.000030 - momentum: 0.000000
2023-10-23 19:51:20,045 epoch 2 - iter 48/242 - loss 0.20656689 - time (sec): 3.05 - samples/sec: 1619.39 - lr: 0.000029 - momentum: 0.000000
2023-10-23 19:51:21,553 epoch 2 - iter 72/242 - loss 0.19524453 - time (sec): 4.56 - samples/sec: 1643.69 - lr: 0.000029 - momentum: 0.000000
2023-10-23 19:51:23,051 epoch 2 - iter 96/242 - loss 0.19474375 - time (sec): 6.06 - samples/sec: 1632.18 - lr: 0.000029 - momentum: 0.000000
2023-10-23 19:51:24,592 epoch 2 - iter 120/242 - loss 0.18071586 - time (sec): 7.60 - samples/sec: 1623.07 - lr: 0.000028 - momentum: 0.000000
2023-10-23 19:51:26,112 epoch 2 - iter 144/242 - loss 0.16705783 - time (sec): 9.12 - samples/sec: 1613.35 - lr: 0.000028 - momentum: 0.000000
2023-10-23 19:51:27,640 epoch 2 - iter 168/242 - loss 0.16801971 - time (sec): 10.65 - samples/sec: 1621.31 - lr: 0.000028 - momentum: 0.000000
2023-10-23 19:51:29,168 epoch 2 - iter 192/242 - loss 0.16601404 - time (sec): 12.17 - samples/sec: 1617.57 - lr: 0.000027 - momentum: 0.000000
2023-10-23 19:51:30,652 epoch 2 - iter 216/242 - loss 0.16087158 - time (sec): 13.66 - samples/sec: 1618.42 - lr: 0.000027 - momentum: 0.000000
2023-10-23 19:51:32,151 epoch 2 - iter 240/242 - loss 0.16125830 - time (sec): 15.16 - samples/sec: 1618.95 - lr: 0.000027 - momentum: 0.000000
2023-10-23 19:51:32,278 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:32,278 EPOCH 2 done: loss 0.1619 - lr: 0.000027
2023-10-23 19:51:32,968 DEV : loss 0.12492977827787399 - f1-score (micro avg) 0.7722
2023-10-23 19:51:32,971 saving best model
2023-10-23 19:51:33,599 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:35,073 epoch 3 - iter 24/242 - loss 0.08228198 - time (sec): 1.47 - samples/sec: 1552.71 - lr: 0.000026 - momentum: 0.000000
2023-10-23 19:51:36,602 epoch 3 - iter 48/242 - loss 0.09788978 - time (sec): 3.00 - samples/sec: 1525.66 - lr: 0.000026 - momentum: 0.000000
2023-10-23 19:51:38,188 epoch 3 - iter 72/242 - loss 0.09220848 - time (sec): 4.59 - samples/sec: 1586.49 - lr: 0.000026 - momentum: 0.000000
2023-10-23 19:51:39,708 epoch 3 - iter 96/242 - loss 0.08666506 - time (sec): 6.11 - samples/sec: 1576.05 - lr: 0.000025 - momentum: 0.000000
2023-10-23 19:51:41,227 epoch 3 - iter 120/242 - loss 0.09418845 - time (sec): 7.63 - samples/sec: 1615.54 - lr: 0.000025 - momentum: 0.000000
2023-10-23 19:51:42,734 epoch 3 - iter 144/242 - loss 0.09427390 - time (sec): 9.13 - samples/sec: 1593.25 - lr: 0.000025 - momentum: 0.000000
2023-10-23 19:51:44,275 epoch 3 - iter 168/242 - loss 0.09486656 - time (sec): 10.68 - samples/sec: 1613.18 - lr: 0.000024 - momentum: 0.000000
2023-10-23 19:51:45,765 epoch 3 - iter 192/242 - loss 0.09311269 - time (sec): 12.17 - samples/sec: 1605.05 - lr: 0.000024 - momentum: 0.000000
2023-10-23 19:51:47,288 epoch 3 - iter 216/242 - loss 0.09060481 - time (sec): 13.69 - samples/sec: 1599.99 - lr: 0.000024 - momentum: 0.000000
2023-10-23 19:51:48,825 epoch 3 - iter 240/242 - loss 0.09054203 - time (sec): 15.23 - samples/sec: 1613.16 - lr: 0.000023 - momentum: 0.000000
2023-10-23 19:51:48,950 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:48,950 EPOCH 3 done: loss 0.0903 - lr: 0.000023
2023-10-23 19:51:49,642 DEV : loss 0.12668359279632568 - f1-score (micro avg) 0.8466
2023-10-23 19:51:49,646 saving best model
2023-10-23 19:51:50,265 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:51,739 epoch 4 - iter 24/242 - loss 0.05375865 - time (sec): 1.47 - samples/sec: 1585.68 - lr: 0.000023 - momentum: 0.000000
2023-10-23 19:51:53,289 epoch 4 - iter 48/242 - loss 0.07423702 - time (sec): 3.02 - samples/sec: 1610.56 - lr: 0.000023 - momentum: 0.000000
2023-10-23 19:51:54,783 epoch 4 - iter 72/242 - loss 0.06761474 - time (sec): 4.52 - samples/sec: 1589.93 - lr: 0.000022 - momentum: 0.000000
2023-10-23 19:51:56,299 epoch 4 - iter 96/242 - loss 0.06999735 - time (sec): 6.03 - samples/sec: 1585.83 - lr: 0.000022 - momentum: 0.000000
2023-10-23 19:51:57,818 epoch 4 - iter 120/242 - loss 0.06846459 - time (sec): 7.55 - samples/sec: 1590.12 - lr: 0.000022 - momentum: 0.000000
2023-10-23 19:51:59,309 epoch 4 - iter 144/242 - loss 0.06195957 - time (sec): 9.04 - samples/sec: 1564.54 - lr: 0.000021 - momentum: 0.000000
2023-10-23 19:52:00,821 epoch 4 - iter 168/242 - loss 0.06057882 - time (sec): 10.55 - samples/sec: 1556.71 - lr: 0.000021 - momentum: 0.000000
2023-10-23 19:52:02,395 epoch 4 - iter 192/242 - loss 0.06467063 - time (sec): 12.13 - samples/sec: 1589.37 - lr: 0.000021 - momentum: 0.000000
2023-10-23 19:52:03,966 epoch 4 - iter 216/242 - loss 0.06723331 - time (sec): 13.70 - samples/sec: 1606.84 - lr: 0.000020 - momentum: 0.000000
2023-10-23 19:52:05,508 epoch 4 - iter 240/242 - loss 0.06588115 - time (sec): 15.24 - samples/sec: 1612.51 - lr: 0.000020 - momentum: 0.000000
2023-10-23 19:52:05,632 ----------------------------------------------------------------------------------------------------
2023-10-23 19:52:05,632 EPOCH 4 done: loss 0.0661 - lr: 0.000020
2023-10-23 19:52:06,328 DEV : loss 0.14996084570884705 - f1-score (micro avg) 0.8433
2023-10-23 19:52:06,332 ----------------------------------------------------------------------------------------------------
2023-10-23 19:52:07,845 epoch 5 - iter 24/242 - loss 0.03040416 - time (sec): 1.51 - samples/sec: 1661.72 - lr: 0.000020 - momentum: 0.000000
2023-10-23 19:52:09,375 epoch 5 - iter 48/242 - loss 0.02794239 - time (sec): 3.04 - samples/sec: 1650.07 - lr: 0.000019 - momentum: 0.000000
2023-10-23 19:52:10,919 epoch 5 - iter 72/242 - loss 0.03380901 - time (sec): 4.59 - samples/sec: 1646.76 - lr: 0.000019 - momentum: 0.000000
2023-10-23 19:52:12,408 epoch 5 - iter 96/242 - loss 0.03631379 - time (sec): 6.08 - samples/sec: 1643.93 - lr: 0.000019 - momentum: 0.000000
2023-10-23 19:52:13,940 epoch 5 - iter 120/242 - loss 0.03974207 - time (sec): 7.61 - samples/sec: 1658.61 - lr: 0.000018 - momentum: 0.000000
2023-10-23 19:52:15,416 epoch 5 - iter 144/242 - loss 0.04254043 - time (sec): 9.08 - samples/sec: 1642.07 - lr: 0.000018 - momentum: 0.000000
2023-10-23 19:52:16,944 epoch 5 - iter 168/242 - loss 0.04360087 - time (sec): 10.61 - samples/sec: 1633.29 - lr: 0.000018 - momentum: 0.000000
2023-10-23 19:52:18,446 epoch 5 - iter 192/242 - loss 0.04259084 - time (sec): 12.11 - samples/sec: 1639.22 - lr: 0.000017 - momentum: 0.000000
2023-10-23 19:52:20,011 epoch 5 - iter 216/242 - loss 0.04883753 - time (sec): 13.68 - samples/sec: 1642.98 - lr: 0.000017 - momentum: 0.000000
2023-10-23 19:52:21,547 epoch 5 - iter 240/242 - loss 0.04851010 - time (sec): 15.21 - samples/sec: 1621.60 - lr: 0.000017 - momentum: 0.000000
2023-10-23 19:52:21,656 ----------------------------------------------------------------------------------------------------
2023-10-23 19:52:21,656 EPOCH 5 done: loss 0.0485 - lr: 0.000017
2023-10-23 19:52:22,354 DEV : loss 0.1554577797651291 - f1-score (micro avg) 0.8468
2023-10-23 19:52:22,358 saving best model
2023-10-23 19:52:22,980 ----------------------------------------------------------------------------------------------------
2023-10-23 19:52:24,496 epoch 6 - iter 24/242 - loss 0.03258603 - time (sec): 1.52 - samples/sec: 1736.41 - lr: 0.000016 - momentum: 0.000000
2023-10-23 19:52:26,041 epoch 6 - iter 48/242 - loss 0.03134851 - time (sec): 3.06 - samples/sec: 1627.53 - lr: 0.000016 - momentum: 0.000000
2023-10-23 19:52:27,593 epoch 6 - iter 72/242 - loss 0.02940348 - time (sec): 4.61 - samples/sec: 1646.75 - lr: 0.000016 - momentum: 0.000000
2023-10-23 19:52:29,102 epoch 6 - iter 96/242 - loss 0.03693120 - time (sec): 6.12 - samples/sec: 1658.87 - lr: 0.000015 - momentum: 0.000000
2023-10-23 19:52:30,618 epoch 6 - iter 120/242 - loss 0.03724375 - time (sec): 7.64 - samples/sec: 1627.48 - lr: 0.000015 - momentum: 0.000000
2023-10-23 19:52:32,150 epoch 6 - iter 144/242 - loss 0.03517163 - time (sec): 9.17 - samples/sec: 1611.73 - lr: 0.000015 - momentum: 0.000000
2023-10-23 19:52:33,649 epoch 6 - iter 168/242 - loss 0.03754916 - time (sec): 10.67 - samples/sec: 1615.39 - lr: 0.000014 - momentum: 0.000000
2023-10-23 19:52:35,155 epoch 6 - iter 192/242 - loss 0.03910231 - time (sec): 12.17 - samples/sec: 1608.28 - lr: 0.000014 - momentum: 0.000000
2023-10-23 19:52:36,685 epoch 6 - iter 216/242 - loss 0.03635218 - time (sec): 13.70 - samples/sec: 1602.92 - lr: 0.000014 - momentum: 0.000000
2023-10-23 19:52:38,190 epoch 6 - iter 240/242 - loss 0.03612874 - time (sec): 15.21 - samples/sec: 1615.01 - lr: 0.000013 - momentum: 0.000000
2023-10-23 19:52:38,313 ----------------------------------------------------------------------------------------------------
2023-10-23 19:52:38,313 EPOCH 6 done: loss 0.0359 - lr: 0.000013
2023-10-23 19:52:39,009 DEV : loss 0.178489550948143 - f1-score (micro avg) 0.8529
2023-10-23 19:52:39,013 saving best model
2023-10-23 19:52:39,713 ----------------------------------------------------------------------------------------------------
2023-10-23 19:52:41,201 epoch 7 - iter 24/242 - loss 0.02150878 - time (sec): 1.49 - samples/sec: 1605.08 - lr: 0.000013 - momentum: 0.000000
2023-10-23 19:52:42,695 epoch 7 - iter 48/242 - loss 0.01844868 - time (sec): 2.98 - samples/sec: 1543.27 - lr: 0.000013 - momentum: 0.000000
2023-10-23 19:52:44,236 epoch 7 - iter 72/242 - loss 0.02196696 - time (sec): 4.52 - samples/sec: 1538.15 - lr: 0.000012 - momentum: 0.000000
2023-10-23 19:52:45,738 epoch 7 - iter 96/242 - loss 0.01979708 - time (sec): 6.02 - samples/sec: 1537.86 - lr: 0.000012 - momentum: 0.000000
2023-10-23 19:52:47,212 epoch 7 - iter 120/242 - loss 0.02718489 - time (sec): 7.50 - samples/sec: 1540.47 - lr: 0.000012 - momentum: 0.000000
2023-10-23 19:52:48,774 epoch 7 - iter 144/242 - loss 0.02457534 - time (sec): 9.06 - samples/sec: 1574.81 - lr: 0.000011 - momentum: 0.000000
2023-10-23 19:52:50,354 epoch 7 - iter 168/242 - loss 0.02497261 - time (sec): 10.64 - samples/sec: 1598.71 - lr: 0.000011 - momentum: 0.000000
2023-10-23 19:52:51,860 epoch 7 - iter 192/242 - loss 0.02243602 - time (sec): 12.15 - samples/sec: 1599.45 - lr: 0.000011 - momentum: 0.000000
2023-10-23 19:52:53,426 epoch 7 - iter 216/242 - loss 0.02458389 - time (sec): 13.71 - samples/sec: 1609.59 - lr: 0.000010 - momentum: 0.000000
2023-10-23 19:52:54,959 epoch 7 - iter 240/242 - loss 0.02548208 - time (sec): 15.24 - samples/sec: 1615.89 - lr: 0.000010 - momentum: 0.000000
2023-10-23 19:52:55,074 ----------------------------------------------------------------------------------------------------
2023-10-23 19:52:55,075 EPOCH 7 done: loss 0.0265 - lr: 0.000010
2023-10-23 19:52:55,767 DEV : loss 0.1920190155506134 - f1-score (micro avg) 0.847
2023-10-23 19:52:55,770 ----------------------------------------------------------------------------------------------------
2023-10-23 19:52:57,301 epoch 8 - iter 24/242 - loss 0.02151881 - time (sec): 1.53 - samples/sec: 1623.18 - lr: 0.000010 - momentum: 0.000000
2023-10-23 19:52:58,781 epoch 8 - iter 48/242 - loss 0.02073414 - time (sec): 3.01 - samples/sec: 1623.83 - lr: 0.000009 - momentum: 0.000000
2023-10-23 19:53:00,304 epoch 8 - iter 72/242 - loss 0.01991517 - time (sec): 4.53 - samples/sec: 1684.27 - lr: 0.000009 - momentum: 0.000000
2023-10-23 19:53:01,830 epoch 8 - iter 96/242 - loss 0.01720566 - time (sec): 6.06 - samples/sec: 1665.22 - lr: 0.000009 - momentum: 0.000000
2023-10-23 19:53:03,308 epoch 8 - iter 120/242 - loss 0.01675706 - time (sec): 7.54 - samples/sec: 1640.96 - lr: 0.000008 - momentum: 0.000000
2023-10-23 19:53:04,816 epoch 8 - iter 144/242 - loss 0.01692203 - time (sec): 9.04 - samples/sec: 1624.27 - lr: 0.000008 - momentum: 0.000000
2023-10-23 19:53:06,370 epoch 8 - iter 168/242 - loss 0.01690889 - time (sec): 10.60 - samples/sec: 1620.66 - lr: 0.000008 - momentum: 0.000000
2023-10-23 19:53:07,930 epoch 8 - iter 192/242 - loss 0.01728285 - time (sec): 12.16 - samples/sec: 1635.44 - lr: 0.000007 - momentum: 0.000000
2023-10-23 19:53:09,442 epoch 8 - iter 216/242 - loss 0.01730991 - time (sec): 13.67 - samples/sec: 1630.31 - lr: 0.000007 - momentum: 0.000000
2023-10-23 19:53:10,974 epoch 8 - iter 240/242 - loss 0.01675284 - time (sec): 15.20 - samples/sec: 1621.37 - lr: 0.000007 - momentum: 0.000000
2023-10-23 19:53:11,086 ----------------------------------------------------------------------------------------------------
2023-10-23 19:53:11,087 EPOCH 8 done: loss 0.0167 - lr: 0.000007
2023-10-23 19:53:11,908 DEV : loss 0.18184901773929596 - f1-score (micro avg) 0.8501
2023-10-23 19:53:11,912 ----------------------------------------------------------------------------------------------------
2023-10-23 19:53:13,455 epoch 9 - iter 24/242 - loss 0.00672192 - time (sec): 1.54 - samples/sec: 1686.59 - lr: 0.000006 - momentum: 0.000000
2023-10-23 19:53:14,978 epoch 9 - iter 48/242 - loss 0.00495635 - time (sec): 3.07 - samples/sec: 1663.03 - lr: 0.000006 - momentum: 0.000000
2023-10-23 19:53:16,509 epoch 9 - iter 72/242 - loss 0.01198613 - time (sec): 4.60 - samples/sec: 1638.27 - lr: 0.000006 - momentum: 0.000000
2023-10-23 19:53:18,013 epoch 9 - iter 96/242 - loss 0.01151938 - time (sec): 6.10 - samples/sec: 1613.86 - lr: 0.000005 - momentum: 0.000000
2023-10-23 19:53:19,476 epoch 9 - iter 120/242 - loss 0.01046535 - time (sec): 7.56 - samples/sec: 1571.19 - lr: 0.000005 - momentum: 0.000000
2023-10-23 19:53:21,035 epoch 9 - iter 144/242 - loss 0.01032059 - time (sec): 9.12 - samples/sec: 1589.91 - lr: 0.000005 - momentum: 0.000000
2023-10-23 19:53:22,534 epoch 9 - iter 168/242 - loss 0.01270544 - time (sec): 10.62 - samples/sec: 1591.14 - lr: 0.000004 - momentum: 0.000000
2023-10-23 19:53:24,111 epoch 9 - iter 192/242 - loss 0.01126915 - time (sec): 12.20 - samples/sec: 1598.34 - lr: 0.000004 - momentum: 0.000000
2023-10-23 19:53:25,651 epoch 9 - iter 216/242 - loss 0.01188979 - time (sec): 13.74 - samples/sec: 1594.49 - lr: 0.000004 - momentum: 0.000000
2023-10-23 19:53:27,186 epoch 9 - iter 240/242 - loss 0.01147686 - time (sec): 15.27 - samples/sec: 1611.90 - lr: 0.000003 - momentum: 0.000000
2023-10-23 19:53:27,298 ----------------------------------------------------------------------------------------------------
2023-10-23 19:53:27,298 EPOCH 9 done: loss 0.0114 - lr: 0.000003
2023-10-23 19:53:27,996 DEV : loss 0.20280949771404266 - f1-score (micro avg) 0.8432
2023-10-23 19:53:28,000 ----------------------------------------------------------------------------------------------------
2023-10-23 19:53:29,539 epoch 10 - iter 24/242 - loss 0.01646384 - time (sec): 1.54 - samples/sec: 1579.90 - lr: 0.000003 - momentum: 0.000000
2023-10-23 19:53:31,030 epoch 10 - iter 48/242 - loss 0.01825067 - time (sec): 3.03 - samples/sec: 1500.23 - lr: 0.000003 - momentum: 0.000000
2023-10-23 19:53:32,543 epoch 10 - iter 72/242 - loss 0.01305417 - time (sec): 4.54 - samples/sec: 1545.99 - lr: 0.000002 - momentum: 0.000000
2023-10-23 19:53:34,136 epoch 10 - iter 96/242 - loss 0.01266924 - time (sec): 6.13 - samples/sec: 1567.26 - lr: 0.000002 - momentum: 0.000000
2023-10-23 19:53:35,629 epoch 10 - iter 120/242 - loss 0.01209649 - time (sec): 7.63 - samples/sec: 1574.74 - lr: 0.000002 - momentum: 0.000000
2023-10-23 19:53:37,156 epoch 10 - iter 144/242 - loss 0.01165806 - time (sec): 9.16 - samples/sec: 1586.89 - lr: 0.000001 - momentum: 0.000000
2023-10-23 19:53:38,724 epoch 10 - iter 168/242 - loss 0.01084567 - time (sec): 10.72 - samples/sec: 1607.40 - lr: 0.000001 - momentum: 0.000000
2023-10-23 19:53:40,273 epoch 10 - iter 192/242 - loss 0.00982812 - time (sec): 12.27 - samples/sec: 1602.62 - lr: 0.000001 - momentum: 0.000000
2023-10-23 19:53:41,814 epoch 10 - iter 216/242 - loss 0.00942024 - time (sec): 13.81 - samples/sec: 1619.41 - lr: 0.000000 - momentum: 0.000000
2023-10-23 19:53:43,325 epoch 10 - iter 240/242 - loss 0.00884086 - time (sec): 15.32 - samples/sec: 1608.24 - lr: 0.000000 - momentum: 0.000000
2023-10-23 19:53:43,436 ----------------------------------------------------------------------------------------------------
2023-10-23 19:53:43,436 EPOCH 10 done: loss 0.0088 - lr: 0.000000
2023-10-23 19:53:44,137 DEV : loss 0.2002663016319275 - f1-score (micro avg) 0.8483
2023-10-23 19:53:44,610 ----------------------------------------------------------------------------------------------------
2023-10-23 19:53:44,611 Loading model from best epoch ...
2023-10-23 19:53:46,074 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-23 19:53:46,809
Results:
- F-score (micro) 0.7866
- F-score (macro) 0.5592
- Accuracy 0.6705
By class:
precision recall f1-score support
pers 0.8345 0.8705 0.8521 139
scope 0.7832 0.8682 0.8235 129
work 0.6129 0.7125 0.6590 80
loc 0.7500 0.3333 0.4615 9
date 0.0000 0.0000 0.0000 3
micro avg 0.7610 0.8139 0.7866 360
macro avg 0.5961 0.5569 0.5592 360
weighted avg 0.7578 0.8139 0.7821 360
2023-10-23 19:53:46,809 ----------------------------------------------------------------------------------------------------
|