File size: 36,889 Bytes
6625a36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
2023-10-23 19:51:00,417 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:00,418 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(64001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (1): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (2): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (3): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (4): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (5): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (6): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (7): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (8): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (9): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (10): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (11): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-23 19:51:00,418 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:00,418 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-23 19:51:00,418 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:00,418 Train:  966 sentences
2023-10-23 19:51:00,418         (train_with_dev=False, train_with_test=False)
2023-10-23 19:51:00,418 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:00,418 Training Params:
2023-10-23 19:51:00,418  - learning_rate: "3e-05" 
2023-10-23 19:51:00,418  - mini_batch_size: "4"
2023-10-23 19:51:00,418  - max_epochs: "10"
2023-10-23 19:51:00,418  - shuffle: "True"
2023-10-23 19:51:00,418 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:00,418 Plugins:
2023-10-23 19:51:00,418  - TensorboardLogger
2023-10-23 19:51:00,418  - LinearScheduler | warmup_fraction: '0.1'
2023-10-23 19:51:00,418 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:00,418 Final evaluation on model from best epoch (best-model.pt)
2023-10-23 19:51:00,418  - metric: "('micro avg', 'f1-score')"
2023-10-23 19:51:00,419 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:00,419 Computation:
2023-10-23 19:51:00,419  - compute on device: cuda:0
2023-10-23 19:51:00,419  - embedding storage: none
2023-10-23 19:51:00,419 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:00,419 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-23 19:51:00,419 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:00,419 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:00,419 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-23 19:51:01,874 epoch 1 - iter 24/242 - loss 3.19223754 - time (sec): 1.45 - samples/sec: 1580.94 - lr: 0.000003 - momentum: 0.000000
2023-10-23 19:51:03,430 epoch 1 - iter 48/242 - loss 2.40588811 - time (sec): 3.01 - samples/sec: 1709.78 - lr: 0.000006 - momentum: 0.000000
2023-10-23 19:51:04,914 epoch 1 - iter 72/242 - loss 1.84035746 - time (sec): 4.49 - samples/sec: 1664.08 - lr: 0.000009 - momentum: 0.000000
2023-10-23 19:51:06,427 epoch 1 - iter 96/242 - loss 1.51170565 - time (sec): 6.01 - samples/sec: 1655.46 - lr: 0.000012 - momentum: 0.000000
2023-10-23 19:51:07,973 epoch 1 - iter 120/242 - loss 1.31512225 - time (sec): 7.55 - samples/sec: 1645.64 - lr: 0.000015 - momentum: 0.000000
2023-10-23 19:51:09,511 epoch 1 - iter 144/242 - loss 1.18607233 - time (sec): 9.09 - samples/sec: 1622.96 - lr: 0.000018 - momentum: 0.000000
2023-10-23 19:51:11,033 epoch 1 - iter 168/242 - loss 1.06918175 - time (sec): 10.61 - samples/sec: 1627.64 - lr: 0.000021 - momentum: 0.000000
2023-10-23 19:51:12,551 epoch 1 - iter 192/242 - loss 0.97368169 - time (sec): 12.13 - samples/sec: 1625.95 - lr: 0.000024 - momentum: 0.000000
2023-10-23 19:51:14,111 epoch 1 - iter 216/242 - loss 0.89392525 - time (sec): 13.69 - samples/sec: 1619.11 - lr: 0.000027 - momentum: 0.000000
2023-10-23 19:51:15,587 epoch 1 - iter 240/242 - loss 0.82808428 - time (sec): 15.17 - samples/sec: 1614.38 - lr: 0.000030 - momentum: 0.000000
2023-10-23 19:51:15,708 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:15,708 EPOCH 1 done: loss 0.8216 - lr: 0.000030
2023-10-23 19:51:16,520 DEV : loss 0.1904076784849167 - f1-score (micro avg)  0.625
2023-10-23 19:51:16,525 saving best model
2023-10-23 19:51:16,994 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:18,513 epoch 2 - iter 24/242 - loss 0.22047277 - time (sec): 1.52 - samples/sec: 1646.87 - lr: 0.000030 - momentum: 0.000000
2023-10-23 19:51:20,045 epoch 2 - iter 48/242 - loss 0.20656689 - time (sec): 3.05 - samples/sec: 1619.39 - lr: 0.000029 - momentum: 0.000000
2023-10-23 19:51:21,553 epoch 2 - iter 72/242 - loss 0.19524453 - time (sec): 4.56 - samples/sec: 1643.69 - lr: 0.000029 - momentum: 0.000000
2023-10-23 19:51:23,051 epoch 2 - iter 96/242 - loss 0.19474375 - time (sec): 6.06 - samples/sec: 1632.18 - lr: 0.000029 - momentum: 0.000000
2023-10-23 19:51:24,592 epoch 2 - iter 120/242 - loss 0.18071586 - time (sec): 7.60 - samples/sec: 1623.07 - lr: 0.000028 - momentum: 0.000000
2023-10-23 19:51:26,112 epoch 2 - iter 144/242 - loss 0.16705783 - time (sec): 9.12 - samples/sec: 1613.35 - lr: 0.000028 - momentum: 0.000000
2023-10-23 19:51:27,640 epoch 2 - iter 168/242 - loss 0.16801971 - time (sec): 10.65 - samples/sec: 1621.31 - lr: 0.000028 - momentum: 0.000000
2023-10-23 19:51:29,168 epoch 2 - iter 192/242 - loss 0.16601404 - time (sec): 12.17 - samples/sec: 1617.57 - lr: 0.000027 - momentum: 0.000000
2023-10-23 19:51:30,652 epoch 2 - iter 216/242 - loss 0.16087158 - time (sec): 13.66 - samples/sec: 1618.42 - lr: 0.000027 - momentum: 0.000000
2023-10-23 19:51:32,151 epoch 2 - iter 240/242 - loss 0.16125830 - time (sec): 15.16 - samples/sec: 1618.95 - lr: 0.000027 - momentum: 0.000000
2023-10-23 19:51:32,278 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:32,278 EPOCH 2 done: loss 0.1619 - lr: 0.000027
2023-10-23 19:51:32,968 DEV : loss 0.12492977827787399 - f1-score (micro avg)  0.7722
2023-10-23 19:51:32,971 saving best model
2023-10-23 19:51:33,599 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:35,073 epoch 3 - iter 24/242 - loss 0.08228198 - time (sec): 1.47 - samples/sec: 1552.71 - lr: 0.000026 - momentum: 0.000000
2023-10-23 19:51:36,602 epoch 3 - iter 48/242 - loss 0.09788978 - time (sec): 3.00 - samples/sec: 1525.66 - lr: 0.000026 - momentum: 0.000000
2023-10-23 19:51:38,188 epoch 3 - iter 72/242 - loss 0.09220848 - time (sec): 4.59 - samples/sec: 1586.49 - lr: 0.000026 - momentum: 0.000000
2023-10-23 19:51:39,708 epoch 3 - iter 96/242 - loss 0.08666506 - time (sec): 6.11 - samples/sec: 1576.05 - lr: 0.000025 - momentum: 0.000000
2023-10-23 19:51:41,227 epoch 3 - iter 120/242 - loss 0.09418845 - time (sec): 7.63 - samples/sec: 1615.54 - lr: 0.000025 - momentum: 0.000000
2023-10-23 19:51:42,734 epoch 3 - iter 144/242 - loss 0.09427390 - time (sec): 9.13 - samples/sec: 1593.25 - lr: 0.000025 - momentum: 0.000000
2023-10-23 19:51:44,275 epoch 3 - iter 168/242 - loss 0.09486656 - time (sec): 10.68 - samples/sec: 1613.18 - lr: 0.000024 - momentum: 0.000000
2023-10-23 19:51:45,765 epoch 3 - iter 192/242 - loss 0.09311269 - time (sec): 12.17 - samples/sec: 1605.05 - lr: 0.000024 - momentum: 0.000000
2023-10-23 19:51:47,288 epoch 3 - iter 216/242 - loss 0.09060481 - time (sec): 13.69 - samples/sec: 1599.99 - lr: 0.000024 - momentum: 0.000000
2023-10-23 19:51:48,825 epoch 3 - iter 240/242 - loss 0.09054203 - time (sec): 15.23 - samples/sec: 1613.16 - lr: 0.000023 - momentum: 0.000000
2023-10-23 19:51:48,950 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:48,950 EPOCH 3 done: loss 0.0903 - lr: 0.000023
2023-10-23 19:51:49,642 DEV : loss 0.12668359279632568 - f1-score (micro avg)  0.8466
2023-10-23 19:51:49,646 saving best model
2023-10-23 19:51:50,265 ----------------------------------------------------------------------------------------------------
2023-10-23 19:51:51,739 epoch 4 - iter 24/242 - loss 0.05375865 - time (sec): 1.47 - samples/sec: 1585.68 - lr: 0.000023 - momentum: 0.000000
2023-10-23 19:51:53,289 epoch 4 - iter 48/242 - loss 0.07423702 - time (sec): 3.02 - samples/sec: 1610.56 - lr: 0.000023 - momentum: 0.000000
2023-10-23 19:51:54,783 epoch 4 - iter 72/242 - loss 0.06761474 - time (sec): 4.52 - samples/sec: 1589.93 - lr: 0.000022 - momentum: 0.000000
2023-10-23 19:51:56,299 epoch 4 - iter 96/242 - loss 0.06999735 - time (sec): 6.03 - samples/sec: 1585.83 - lr: 0.000022 - momentum: 0.000000
2023-10-23 19:51:57,818 epoch 4 - iter 120/242 - loss 0.06846459 - time (sec): 7.55 - samples/sec: 1590.12 - lr: 0.000022 - momentum: 0.000000
2023-10-23 19:51:59,309 epoch 4 - iter 144/242 - loss 0.06195957 - time (sec): 9.04 - samples/sec: 1564.54 - lr: 0.000021 - momentum: 0.000000
2023-10-23 19:52:00,821 epoch 4 - iter 168/242 - loss 0.06057882 - time (sec): 10.55 - samples/sec: 1556.71 - lr: 0.000021 - momentum: 0.000000
2023-10-23 19:52:02,395 epoch 4 - iter 192/242 - loss 0.06467063 - time (sec): 12.13 - samples/sec: 1589.37 - lr: 0.000021 - momentum: 0.000000
2023-10-23 19:52:03,966 epoch 4 - iter 216/242 - loss 0.06723331 - time (sec): 13.70 - samples/sec: 1606.84 - lr: 0.000020 - momentum: 0.000000
2023-10-23 19:52:05,508 epoch 4 - iter 240/242 - loss 0.06588115 - time (sec): 15.24 - samples/sec: 1612.51 - lr: 0.000020 - momentum: 0.000000
2023-10-23 19:52:05,632 ----------------------------------------------------------------------------------------------------
2023-10-23 19:52:05,632 EPOCH 4 done: loss 0.0661 - lr: 0.000020
2023-10-23 19:52:06,328 DEV : loss 0.14996084570884705 - f1-score (micro avg)  0.8433
2023-10-23 19:52:06,332 ----------------------------------------------------------------------------------------------------
2023-10-23 19:52:07,845 epoch 5 - iter 24/242 - loss 0.03040416 - time (sec): 1.51 - samples/sec: 1661.72 - lr: 0.000020 - momentum: 0.000000
2023-10-23 19:52:09,375 epoch 5 - iter 48/242 - loss 0.02794239 - time (sec): 3.04 - samples/sec: 1650.07 - lr: 0.000019 - momentum: 0.000000
2023-10-23 19:52:10,919 epoch 5 - iter 72/242 - loss 0.03380901 - time (sec): 4.59 - samples/sec: 1646.76 - lr: 0.000019 - momentum: 0.000000
2023-10-23 19:52:12,408 epoch 5 - iter 96/242 - loss 0.03631379 - time (sec): 6.08 - samples/sec: 1643.93 - lr: 0.000019 - momentum: 0.000000
2023-10-23 19:52:13,940 epoch 5 - iter 120/242 - loss 0.03974207 - time (sec): 7.61 - samples/sec: 1658.61 - lr: 0.000018 - momentum: 0.000000
2023-10-23 19:52:15,416 epoch 5 - iter 144/242 - loss 0.04254043 - time (sec): 9.08 - samples/sec: 1642.07 - lr: 0.000018 - momentum: 0.000000
2023-10-23 19:52:16,944 epoch 5 - iter 168/242 - loss 0.04360087 - time (sec): 10.61 - samples/sec: 1633.29 - lr: 0.000018 - momentum: 0.000000
2023-10-23 19:52:18,446 epoch 5 - iter 192/242 - loss 0.04259084 - time (sec): 12.11 - samples/sec: 1639.22 - lr: 0.000017 - momentum: 0.000000
2023-10-23 19:52:20,011 epoch 5 - iter 216/242 - loss 0.04883753 - time (sec): 13.68 - samples/sec: 1642.98 - lr: 0.000017 - momentum: 0.000000
2023-10-23 19:52:21,547 epoch 5 - iter 240/242 - loss 0.04851010 - time (sec): 15.21 - samples/sec: 1621.60 - lr: 0.000017 - momentum: 0.000000
2023-10-23 19:52:21,656 ----------------------------------------------------------------------------------------------------
2023-10-23 19:52:21,656 EPOCH 5 done: loss 0.0485 - lr: 0.000017
2023-10-23 19:52:22,354 DEV : loss 0.1554577797651291 - f1-score (micro avg)  0.8468
2023-10-23 19:52:22,358 saving best model
2023-10-23 19:52:22,980 ----------------------------------------------------------------------------------------------------
2023-10-23 19:52:24,496 epoch 6 - iter 24/242 - loss 0.03258603 - time (sec): 1.52 - samples/sec: 1736.41 - lr: 0.000016 - momentum: 0.000000
2023-10-23 19:52:26,041 epoch 6 - iter 48/242 - loss 0.03134851 - time (sec): 3.06 - samples/sec: 1627.53 - lr: 0.000016 - momentum: 0.000000
2023-10-23 19:52:27,593 epoch 6 - iter 72/242 - loss 0.02940348 - time (sec): 4.61 - samples/sec: 1646.75 - lr: 0.000016 - momentum: 0.000000
2023-10-23 19:52:29,102 epoch 6 - iter 96/242 - loss 0.03693120 - time (sec): 6.12 - samples/sec: 1658.87 - lr: 0.000015 - momentum: 0.000000
2023-10-23 19:52:30,618 epoch 6 - iter 120/242 - loss 0.03724375 - time (sec): 7.64 - samples/sec: 1627.48 - lr: 0.000015 - momentum: 0.000000
2023-10-23 19:52:32,150 epoch 6 - iter 144/242 - loss 0.03517163 - time (sec): 9.17 - samples/sec: 1611.73 - lr: 0.000015 - momentum: 0.000000
2023-10-23 19:52:33,649 epoch 6 - iter 168/242 - loss 0.03754916 - time (sec): 10.67 - samples/sec: 1615.39 - lr: 0.000014 - momentum: 0.000000
2023-10-23 19:52:35,155 epoch 6 - iter 192/242 - loss 0.03910231 - time (sec): 12.17 - samples/sec: 1608.28 - lr: 0.000014 - momentum: 0.000000
2023-10-23 19:52:36,685 epoch 6 - iter 216/242 - loss 0.03635218 - time (sec): 13.70 - samples/sec: 1602.92 - lr: 0.000014 - momentum: 0.000000
2023-10-23 19:52:38,190 epoch 6 - iter 240/242 - loss 0.03612874 - time (sec): 15.21 - samples/sec: 1615.01 - lr: 0.000013 - momentum: 0.000000
2023-10-23 19:52:38,313 ----------------------------------------------------------------------------------------------------
2023-10-23 19:52:38,313 EPOCH 6 done: loss 0.0359 - lr: 0.000013
2023-10-23 19:52:39,009 DEV : loss 0.178489550948143 - f1-score (micro avg)  0.8529
2023-10-23 19:52:39,013 saving best model
2023-10-23 19:52:39,713 ----------------------------------------------------------------------------------------------------
2023-10-23 19:52:41,201 epoch 7 - iter 24/242 - loss 0.02150878 - time (sec): 1.49 - samples/sec: 1605.08 - lr: 0.000013 - momentum: 0.000000
2023-10-23 19:52:42,695 epoch 7 - iter 48/242 - loss 0.01844868 - time (sec): 2.98 - samples/sec: 1543.27 - lr: 0.000013 - momentum: 0.000000
2023-10-23 19:52:44,236 epoch 7 - iter 72/242 - loss 0.02196696 - time (sec): 4.52 - samples/sec: 1538.15 - lr: 0.000012 - momentum: 0.000000
2023-10-23 19:52:45,738 epoch 7 - iter 96/242 - loss 0.01979708 - time (sec): 6.02 - samples/sec: 1537.86 - lr: 0.000012 - momentum: 0.000000
2023-10-23 19:52:47,212 epoch 7 - iter 120/242 - loss 0.02718489 - time (sec): 7.50 - samples/sec: 1540.47 - lr: 0.000012 - momentum: 0.000000
2023-10-23 19:52:48,774 epoch 7 - iter 144/242 - loss 0.02457534 - time (sec): 9.06 - samples/sec: 1574.81 - lr: 0.000011 - momentum: 0.000000
2023-10-23 19:52:50,354 epoch 7 - iter 168/242 - loss 0.02497261 - time (sec): 10.64 - samples/sec: 1598.71 - lr: 0.000011 - momentum: 0.000000
2023-10-23 19:52:51,860 epoch 7 - iter 192/242 - loss 0.02243602 - time (sec): 12.15 - samples/sec: 1599.45 - lr: 0.000011 - momentum: 0.000000
2023-10-23 19:52:53,426 epoch 7 - iter 216/242 - loss 0.02458389 - time (sec): 13.71 - samples/sec: 1609.59 - lr: 0.000010 - momentum: 0.000000
2023-10-23 19:52:54,959 epoch 7 - iter 240/242 - loss 0.02548208 - time (sec): 15.24 - samples/sec: 1615.89 - lr: 0.000010 - momentum: 0.000000
2023-10-23 19:52:55,074 ----------------------------------------------------------------------------------------------------
2023-10-23 19:52:55,075 EPOCH 7 done: loss 0.0265 - lr: 0.000010
2023-10-23 19:52:55,767 DEV : loss 0.1920190155506134 - f1-score (micro avg)  0.847
2023-10-23 19:52:55,770 ----------------------------------------------------------------------------------------------------
2023-10-23 19:52:57,301 epoch 8 - iter 24/242 - loss 0.02151881 - time (sec): 1.53 - samples/sec: 1623.18 - lr: 0.000010 - momentum: 0.000000
2023-10-23 19:52:58,781 epoch 8 - iter 48/242 - loss 0.02073414 - time (sec): 3.01 - samples/sec: 1623.83 - lr: 0.000009 - momentum: 0.000000
2023-10-23 19:53:00,304 epoch 8 - iter 72/242 - loss 0.01991517 - time (sec): 4.53 - samples/sec: 1684.27 - lr: 0.000009 - momentum: 0.000000
2023-10-23 19:53:01,830 epoch 8 - iter 96/242 - loss 0.01720566 - time (sec): 6.06 - samples/sec: 1665.22 - lr: 0.000009 - momentum: 0.000000
2023-10-23 19:53:03,308 epoch 8 - iter 120/242 - loss 0.01675706 - time (sec): 7.54 - samples/sec: 1640.96 - lr: 0.000008 - momentum: 0.000000
2023-10-23 19:53:04,816 epoch 8 - iter 144/242 - loss 0.01692203 - time (sec): 9.04 - samples/sec: 1624.27 - lr: 0.000008 - momentum: 0.000000
2023-10-23 19:53:06,370 epoch 8 - iter 168/242 - loss 0.01690889 - time (sec): 10.60 - samples/sec: 1620.66 - lr: 0.000008 - momentum: 0.000000
2023-10-23 19:53:07,930 epoch 8 - iter 192/242 - loss 0.01728285 - time (sec): 12.16 - samples/sec: 1635.44 - lr: 0.000007 - momentum: 0.000000
2023-10-23 19:53:09,442 epoch 8 - iter 216/242 - loss 0.01730991 - time (sec): 13.67 - samples/sec: 1630.31 - lr: 0.000007 - momentum: 0.000000
2023-10-23 19:53:10,974 epoch 8 - iter 240/242 - loss 0.01675284 - time (sec): 15.20 - samples/sec: 1621.37 - lr: 0.000007 - momentum: 0.000000
2023-10-23 19:53:11,086 ----------------------------------------------------------------------------------------------------
2023-10-23 19:53:11,087 EPOCH 8 done: loss 0.0167 - lr: 0.000007
2023-10-23 19:53:11,908 DEV : loss 0.18184901773929596 - f1-score (micro avg)  0.8501
2023-10-23 19:53:11,912 ----------------------------------------------------------------------------------------------------
2023-10-23 19:53:13,455 epoch 9 - iter 24/242 - loss 0.00672192 - time (sec): 1.54 - samples/sec: 1686.59 - lr: 0.000006 - momentum: 0.000000
2023-10-23 19:53:14,978 epoch 9 - iter 48/242 - loss 0.00495635 - time (sec): 3.07 - samples/sec: 1663.03 - lr: 0.000006 - momentum: 0.000000
2023-10-23 19:53:16,509 epoch 9 - iter 72/242 - loss 0.01198613 - time (sec): 4.60 - samples/sec: 1638.27 - lr: 0.000006 - momentum: 0.000000
2023-10-23 19:53:18,013 epoch 9 - iter 96/242 - loss 0.01151938 - time (sec): 6.10 - samples/sec: 1613.86 - lr: 0.000005 - momentum: 0.000000
2023-10-23 19:53:19,476 epoch 9 - iter 120/242 - loss 0.01046535 - time (sec): 7.56 - samples/sec: 1571.19 - lr: 0.000005 - momentum: 0.000000
2023-10-23 19:53:21,035 epoch 9 - iter 144/242 - loss 0.01032059 - time (sec): 9.12 - samples/sec: 1589.91 - lr: 0.000005 - momentum: 0.000000
2023-10-23 19:53:22,534 epoch 9 - iter 168/242 - loss 0.01270544 - time (sec): 10.62 - samples/sec: 1591.14 - lr: 0.000004 - momentum: 0.000000
2023-10-23 19:53:24,111 epoch 9 - iter 192/242 - loss 0.01126915 - time (sec): 12.20 - samples/sec: 1598.34 - lr: 0.000004 - momentum: 0.000000
2023-10-23 19:53:25,651 epoch 9 - iter 216/242 - loss 0.01188979 - time (sec): 13.74 - samples/sec: 1594.49 - lr: 0.000004 - momentum: 0.000000
2023-10-23 19:53:27,186 epoch 9 - iter 240/242 - loss 0.01147686 - time (sec): 15.27 - samples/sec: 1611.90 - lr: 0.000003 - momentum: 0.000000
2023-10-23 19:53:27,298 ----------------------------------------------------------------------------------------------------
2023-10-23 19:53:27,298 EPOCH 9 done: loss 0.0114 - lr: 0.000003
2023-10-23 19:53:27,996 DEV : loss 0.20280949771404266 - f1-score (micro avg)  0.8432
2023-10-23 19:53:28,000 ----------------------------------------------------------------------------------------------------
2023-10-23 19:53:29,539 epoch 10 - iter 24/242 - loss 0.01646384 - time (sec): 1.54 - samples/sec: 1579.90 - lr: 0.000003 - momentum: 0.000000
2023-10-23 19:53:31,030 epoch 10 - iter 48/242 - loss 0.01825067 - time (sec): 3.03 - samples/sec: 1500.23 - lr: 0.000003 - momentum: 0.000000
2023-10-23 19:53:32,543 epoch 10 - iter 72/242 - loss 0.01305417 - time (sec): 4.54 - samples/sec: 1545.99 - lr: 0.000002 - momentum: 0.000000
2023-10-23 19:53:34,136 epoch 10 - iter 96/242 - loss 0.01266924 - time (sec): 6.13 - samples/sec: 1567.26 - lr: 0.000002 - momentum: 0.000000
2023-10-23 19:53:35,629 epoch 10 - iter 120/242 - loss 0.01209649 - time (sec): 7.63 - samples/sec: 1574.74 - lr: 0.000002 - momentum: 0.000000
2023-10-23 19:53:37,156 epoch 10 - iter 144/242 - loss 0.01165806 - time (sec): 9.16 - samples/sec: 1586.89 - lr: 0.000001 - momentum: 0.000000
2023-10-23 19:53:38,724 epoch 10 - iter 168/242 - loss 0.01084567 - time (sec): 10.72 - samples/sec: 1607.40 - lr: 0.000001 - momentum: 0.000000
2023-10-23 19:53:40,273 epoch 10 - iter 192/242 - loss 0.00982812 - time (sec): 12.27 - samples/sec: 1602.62 - lr: 0.000001 - momentum: 0.000000
2023-10-23 19:53:41,814 epoch 10 - iter 216/242 - loss 0.00942024 - time (sec): 13.81 - samples/sec: 1619.41 - lr: 0.000000 - momentum: 0.000000
2023-10-23 19:53:43,325 epoch 10 - iter 240/242 - loss 0.00884086 - time (sec): 15.32 - samples/sec: 1608.24 - lr: 0.000000 - momentum: 0.000000
2023-10-23 19:53:43,436 ----------------------------------------------------------------------------------------------------
2023-10-23 19:53:43,436 EPOCH 10 done: loss 0.0088 - lr: 0.000000
2023-10-23 19:53:44,137 DEV : loss 0.2002663016319275 - f1-score (micro avg)  0.8483
2023-10-23 19:53:44,610 ----------------------------------------------------------------------------------------------------
2023-10-23 19:53:44,611 Loading model from best epoch ...
2023-10-23 19:53:46,074 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-23 19:53:46,809 
Results:
- F-score (micro) 0.7866
- F-score (macro) 0.5592
- Accuracy 0.6705

By class:
              precision    recall  f1-score   support

        pers     0.8345    0.8705    0.8521       139
       scope     0.7832    0.8682    0.8235       129
        work     0.6129    0.7125    0.6590        80
         loc     0.7500    0.3333    0.4615         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7610    0.8139    0.7866       360
   macro avg     0.5961    0.5569    0.5592       360
weighted avg     0.7578    0.8139    0.7821       360

2023-10-23 19:53:46,809 ----------------------------------------------------------------------------------------------------