File size: 24,150 Bytes
cdb5e9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
2023-10-18 16:10:45,266 ----------------------------------------------------------------------------------------------------
2023-10-18 16:10:45,266 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 128)
        (position_embeddings): Embedding(512, 128)
        (token_type_embeddings): Embedding(2, 128)
        (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-1): 2 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=128, out_features=128, bias=True)
                (key): Linear(in_features=128, out_features=128, bias=True)
                (value): Linear(in_features=128, out_features=128, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=128, out_features=128, bias=True)
                (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=128, out_features=512, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=512, out_features=128, bias=True)
              (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=128, out_features=128, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=128, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-18 16:10:45,266 ----------------------------------------------------------------------------------------------------
2023-10-18 16:10:45,266 MultiCorpus: 1214 train + 266 dev + 251 test sentences
 - NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-18 16:10:45,266 ----------------------------------------------------------------------------------------------------
2023-10-18 16:10:45,266 Train:  1214 sentences
2023-10-18 16:10:45,266         (train_with_dev=False, train_with_test=False)
2023-10-18 16:10:45,266 ----------------------------------------------------------------------------------------------------
2023-10-18 16:10:45,267 Training Params:
2023-10-18 16:10:45,267  - learning_rate: "3e-05" 
2023-10-18 16:10:45,267  - mini_batch_size: "8"
2023-10-18 16:10:45,267  - max_epochs: "10"
2023-10-18 16:10:45,267  - shuffle: "True"
2023-10-18 16:10:45,267 ----------------------------------------------------------------------------------------------------
2023-10-18 16:10:45,267 Plugins:
2023-10-18 16:10:45,267  - TensorboardLogger
2023-10-18 16:10:45,267  - LinearScheduler | warmup_fraction: '0.1'
2023-10-18 16:10:45,267 ----------------------------------------------------------------------------------------------------
2023-10-18 16:10:45,267 Final evaluation on model from best epoch (best-model.pt)
2023-10-18 16:10:45,267  - metric: "('micro avg', 'f1-score')"
2023-10-18 16:10:45,267 ----------------------------------------------------------------------------------------------------
2023-10-18 16:10:45,267 Computation:
2023-10-18 16:10:45,267  - compute on device: cuda:0
2023-10-18 16:10:45,267  - embedding storage: none
2023-10-18 16:10:45,267 ----------------------------------------------------------------------------------------------------
2023-10-18 16:10:45,267 Model training base path: "hmbench-ajmc/en-dbmdz/bert-tiny-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4"
2023-10-18 16:10:45,267 ----------------------------------------------------------------------------------------------------
2023-10-18 16:10:45,267 ----------------------------------------------------------------------------------------------------
2023-10-18 16:10:45,267 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-18 16:10:45,643 epoch 1 - iter 15/152 - loss 4.00194862 - time (sec): 0.38 - samples/sec: 8872.39 - lr: 0.000003 - momentum: 0.000000
2023-10-18 16:10:46,007 epoch 1 - iter 30/152 - loss 3.93032449 - time (sec): 0.74 - samples/sec: 8857.31 - lr: 0.000006 - momentum: 0.000000
2023-10-18 16:10:46,391 epoch 1 - iter 45/152 - loss 3.90027579 - time (sec): 1.12 - samples/sec: 8845.87 - lr: 0.000009 - momentum: 0.000000
2023-10-18 16:10:46,761 epoch 1 - iter 60/152 - loss 3.82549513 - time (sec): 1.49 - samples/sec: 8629.62 - lr: 0.000012 - momentum: 0.000000
2023-10-18 16:10:47,105 epoch 1 - iter 75/152 - loss 3.71965164 - time (sec): 1.84 - samples/sec: 8711.14 - lr: 0.000015 - momentum: 0.000000
2023-10-18 16:10:47,450 epoch 1 - iter 90/152 - loss 3.58454282 - time (sec): 2.18 - samples/sec: 8739.34 - lr: 0.000018 - momentum: 0.000000
2023-10-18 16:10:47,795 epoch 1 - iter 105/152 - loss 3.43789527 - time (sec): 2.53 - samples/sec: 8731.14 - lr: 0.000021 - momentum: 0.000000
2023-10-18 16:10:48,129 epoch 1 - iter 120/152 - loss 3.30319039 - time (sec): 2.86 - samples/sec: 8678.74 - lr: 0.000023 - momentum: 0.000000
2023-10-18 16:10:48,470 epoch 1 - iter 135/152 - loss 3.11978823 - time (sec): 3.20 - samples/sec: 8750.76 - lr: 0.000026 - momentum: 0.000000
2023-10-18 16:10:48,824 epoch 1 - iter 150/152 - loss 2.97198898 - time (sec): 3.56 - samples/sec: 8635.08 - lr: 0.000029 - momentum: 0.000000
2023-10-18 16:10:48,872 ----------------------------------------------------------------------------------------------------
2023-10-18 16:10:48,873 EPOCH 1 done: loss 2.9587 - lr: 0.000029
2023-10-18 16:10:49,350 DEV : loss 0.8460401296615601 - f1-score (micro avg)  0.0
2023-10-18 16:10:49,356 ----------------------------------------------------------------------------------------------------
2023-10-18 16:10:49,733 epoch 2 - iter 15/152 - loss 0.99039188 - time (sec): 0.38 - samples/sec: 8243.63 - lr: 0.000030 - momentum: 0.000000
2023-10-18 16:10:50,111 epoch 2 - iter 30/152 - loss 0.89924649 - time (sec): 0.75 - samples/sec: 8463.66 - lr: 0.000029 - momentum: 0.000000
2023-10-18 16:10:50,447 epoch 2 - iter 45/152 - loss 0.89484187 - time (sec): 1.09 - samples/sec: 8546.18 - lr: 0.000029 - momentum: 0.000000
2023-10-18 16:10:50,772 epoch 2 - iter 60/152 - loss 0.90047475 - time (sec): 1.42 - samples/sec: 8772.68 - lr: 0.000029 - momentum: 0.000000
2023-10-18 16:10:51,082 epoch 2 - iter 75/152 - loss 0.85006453 - time (sec): 1.73 - samples/sec: 8869.57 - lr: 0.000028 - momentum: 0.000000
2023-10-18 16:10:51,408 epoch 2 - iter 90/152 - loss 0.85261376 - time (sec): 2.05 - samples/sec: 8921.11 - lr: 0.000028 - momentum: 0.000000
2023-10-18 16:10:51,737 epoch 2 - iter 105/152 - loss 0.84452527 - time (sec): 2.38 - samples/sec: 9077.56 - lr: 0.000028 - momentum: 0.000000
2023-10-18 16:10:52,067 epoch 2 - iter 120/152 - loss 0.84136420 - time (sec): 2.71 - samples/sec: 9127.68 - lr: 0.000027 - momentum: 0.000000
2023-10-18 16:10:52,389 epoch 2 - iter 135/152 - loss 0.82452902 - time (sec): 3.03 - samples/sec: 9111.12 - lr: 0.000027 - momentum: 0.000000
2023-10-18 16:10:52,713 epoch 2 - iter 150/152 - loss 0.82874038 - time (sec): 3.36 - samples/sec: 9147.55 - lr: 0.000027 - momentum: 0.000000
2023-10-18 16:10:52,755 ----------------------------------------------------------------------------------------------------
2023-10-18 16:10:52,755 EPOCH 2 done: loss 0.8277 - lr: 0.000027
2023-10-18 16:10:53,250 DEV : loss 0.6869751214981079 - f1-score (micro avg)  0.0
2023-10-18 16:10:53,256 ----------------------------------------------------------------------------------------------------
2023-10-18 16:10:53,594 epoch 3 - iter 15/152 - loss 0.71007861 - time (sec): 0.34 - samples/sec: 8663.36 - lr: 0.000026 - momentum: 0.000000
2023-10-18 16:10:53,915 epoch 3 - iter 30/152 - loss 0.72173453 - time (sec): 0.66 - samples/sec: 9286.33 - lr: 0.000026 - momentum: 0.000000
2023-10-18 16:10:54,243 epoch 3 - iter 45/152 - loss 0.71552143 - time (sec): 0.99 - samples/sec: 9286.50 - lr: 0.000026 - momentum: 0.000000
2023-10-18 16:10:54,580 epoch 3 - iter 60/152 - loss 0.69879105 - time (sec): 1.32 - samples/sec: 9501.57 - lr: 0.000025 - momentum: 0.000000
2023-10-18 16:10:54,910 epoch 3 - iter 75/152 - loss 0.66378317 - time (sec): 1.65 - samples/sec: 9334.83 - lr: 0.000025 - momentum: 0.000000
2023-10-18 16:10:55,239 epoch 3 - iter 90/152 - loss 0.64699215 - time (sec): 1.98 - samples/sec: 9166.23 - lr: 0.000025 - momentum: 0.000000
2023-10-18 16:10:55,579 epoch 3 - iter 105/152 - loss 0.63360388 - time (sec): 2.32 - samples/sec: 9073.35 - lr: 0.000024 - momentum: 0.000000
2023-10-18 16:10:55,926 epoch 3 - iter 120/152 - loss 0.63428746 - time (sec): 2.67 - samples/sec: 9078.16 - lr: 0.000024 - momentum: 0.000000
2023-10-18 16:10:56,278 epoch 3 - iter 135/152 - loss 0.63744324 - time (sec): 3.02 - samples/sec: 9102.45 - lr: 0.000024 - momentum: 0.000000
2023-10-18 16:10:56,627 epoch 3 - iter 150/152 - loss 0.62855569 - time (sec): 3.37 - samples/sec: 9084.64 - lr: 0.000023 - momentum: 0.000000
2023-10-18 16:10:56,672 ----------------------------------------------------------------------------------------------------
2023-10-18 16:10:56,672 EPOCH 3 done: loss 0.6253 - lr: 0.000023
2023-10-18 16:10:57,159 DEV : loss 0.5135114789009094 - f1-score (micro avg)  0.0181
2023-10-18 16:10:57,164 saving best model
2023-10-18 16:10:57,197 ----------------------------------------------------------------------------------------------------
2023-10-18 16:10:57,464 epoch 4 - iter 15/152 - loss 0.59486776 - time (sec): 0.27 - samples/sec: 10646.48 - lr: 0.000023 - momentum: 0.000000
2023-10-18 16:10:57,733 epoch 4 - iter 30/152 - loss 0.62103914 - time (sec): 0.54 - samples/sec: 11352.89 - lr: 0.000023 - momentum: 0.000000
2023-10-18 16:10:57,992 epoch 4 - iter 45/152 - loss 0.59834986 - time (sec): 0.79 - samples/sec: 11531.11 - lr: 0.000022 - momentum: 0.000000
2023-10-18 16:10:58,252 epoch 4 - iter 60/152 - loss 0.58045269 - time (sec): 1.05 - samples/sec: 11638.12 - lr: 0.000022 - momentum: 0.000000
2023-10-18 16:10:58,513 epoch 4 - iter 75/152 - loss 0.57649671 - time (sec): 1.32 - samples/sec: 11623.58 - lr: 0.000022 - momentum: 0.000000
2023-10-18 16:10:58,774 epoch 4 - iter 90/152 - loss 0.56525450 - time (sec): 1.58 - samples/sec: 11620.33 - lr: 0.000021 - momentum: 0.000000
2023-10-18 16:10:59,055 epoch 4 - iter 105/152 - loss 0.55064825 - time (sec): 1.86 - samples/sec: 11574.46 - lr: 0.000021 - momentum: 0.000000
2023-10-18 16:10:59,336 epoch 4 - iter 120/152 - loss 0.53920561 - time (sec): 2.14 - samples/sec: 11569.34 - lr: 0.000021 - momentum: 0.000000
2023-10-18 16:10:59,655 epoch 4 - iter 135/152 - loss 0.53041123 - time (sec): 2.46 - samples/sec: 11269.83 - lr: 0.000020 - momentum: 0.000000
2023-10-18 16:10:59,990 epoch 4 - iter 150/152 - loss 0.52477527 - time (sec): 2.79 - samples/sec: 10967.30 - lr: 0.000020 - momentum: 0.000000
2023-10-18 16:11:00,034 ----------------------------------------------------------------------------------------------------
2023-10-18 16:11:00,034 EPOCH 4 done: loss 0.5230 - lr: 0.000020
2023-10-18 16:11:00,549 DEV : loss 0.42890670895576477 - f1-score (micro avg)  0.2158
2023-10-18 16:11:00,554 saving best model
2023-10-18 16:11:00,587 ----------------------------------------------------------------------------------------------------
2023-10-18 16:11:00,913 epoch 5 - iter 15/152 - loss 0.42012484 - time (sec): 0.33 - samples/sec: 9828.59 - lr: 0.000020 - momentum: 0.000000
2023-10-18 16:11:01,250 epoch 5 - iter 30/152 - loss 0.45240271 - time (sec): 0.66 - samples/sec: 9358.30 - lr: 0.000019 - momentum: 0.000000
2023-10-18 16:11:01,575 epoch 5 - iter 45/152 - loss 0.44060881 - time (sec): 0.99 - samples/sec: 9068.59 - lr: 0.000019 - momentum: 0.000000
2023-10-18 16:11:01,913 epoch 5 - iter 60/152 - loss 0.48649653 - time (sec): 1.33 - samples/sec: 8980.75 - lr: 0.000019 - momentum: 0.000000
2023-10-18 16:11:02,245 epoch 5 - iter 75/152 - loss 0.48018059 - time (sec): 1.66 - samples/sec: 9075.73 - lr: 0.000018 - momentum: 0.000000
2023-10-18 16:11:02,572 epoch 5 - iter 90/152 - loss 0.47988015 - time (sec): 1.98 - samples/sec: 9281.66 - lr: 0.000018 - momentum: 0.000000
2023-10-18 16:11:02,886 epoch 5 - iter 105/152 - loss 0.47894319 - time (sec): 2.30 - samples/sec: 9371.53 - lr: 0.000018 - momentum: 0.000000
2023-10-18 16:11:03,203 epoch 5 - iter 120/152 - loss 0.47141827 - time (sec): 2.62 - samples/sec: 9356.51 - lr: 0.000017 - momentum: 0.000000
2023-10-18 16:11:03,541 epoch 5 - iter 135/152 - loss 0.46962915 - time (sec): 2.95 - samples/sec: 9355.58 - lr: 0.000017 - momentum: 0.000000
2023-10-18 16:11:03,858 epoch 5 - iter 150/152 - loss 0.45784441 - time (sec): 3.27 - samples/sec: 9367.37 - lr: 0.000017 - momentum: 0.000000
2023-10-18 16:11:03,896 ----------------------------------------------------------------------------------------------------
2023-10-18 16:11:03,897 EPOCH 5 done: loss 0.4599 - lr: 0.000017
2023-10-18 16:11:04,412 DEV : loss 0.38793084025382996 - f1-score (micro avg)  0.2661
2023-10-18 16:11:04,417 saving best model
2023-10-18 16:11:04,449 ----------------------------------------------------------------------------------------------------
2023-10-18 16:11:04,780 epoch 6 - iter 15/152 - loss 0.38728378 - time (sec): 0.33 - samples/sec: 8716.49 - lr: 0.000016 - momentum: 0.000000
2023-10-18 16:11:05,103 epoch 6 - iter 30/152 - loss 0.43917481 - time (sec): 0.65 - samples/sec: 9334.42 - lr: 0.000016 - momentum: 0.000000
2023-10-18 16:11:05,419 epoch 6 - iter 45/152 - loss 0.42210125 - time (sec): 0.97 - samples/sec: 9261.61 - lr: 0.000016 - momentum: 0.000000
2023-10-18 16:11:05,739 epoch 6 - iter 60/152 - loss 0.43358170 - time (sec): 1.29 - samples/sec: 9215.79 - lr: 0.000015 - momentum: 0.000000
2023-10-18 16:11:06,062 epoch 6 - iter 75/152 - loss 0.43677357 - time (sec): 1.61 - samples/sec: 9142.77 - lr: 0.000015 - momentum: 0.000000
2023-10-18 16:11:06,400 epoch 6 - iter 90/152 - loss 0.43060696 - time (sec): 1.95 - samples/sec: 9191.67 - lr: 0.000015 - momentum: 0.000000
2023-10-18 16:11:06,719 epoch 6 - iter 105/152 - loss 0.42919675 - time (sec): 2.27 - samples/sec: 9261.38 - lr: 0.000014 - momentum: 0.000000
2023-10-18 16:11:07,046 epoch 6 - iter 120/152 - loss 0.41978387 - time (sec): 2.60 - samples/sec: 9343.64 - lr: 0.000014 - momentum: 0.000000
2023-10-18 16:11:07,399 epoch 6 - iter 135/152 - loss 0.42473343 - time (sec): 2.95 - samples/sec: 9277.22 - lr: 0.000014 - momentum: 0.000000
2023-10-18 16:11:07,750 epoch 6 - iter 150/152 - loss 0.42455247 - time (sec): 3.30 - samples/sec: 9270.99 - lr: 0.000013 - momentum: 0.000000
2023-10-18 16:11:07,792 ----------------------------------------------------------------------------------------------------
2023-10-18 16:11:07,792 EPOCH 6 done: loss 0.4240 - lr: 0.000013
2023-10-18 16:11:08,294 DEV : loss 0.36627092957496643 - f1-score (micro avg)  0.3059
2023-10-18 16:11:08,299 saving best model
2023-10-18 16:11:08,332 ----------------------------------------------------------------------------------------------------
2023-10-18 16:11:08,684 epoch 7 - iter 15/152 - loss 0.42443388 - time (sec): 0.35 - samples/sec: 9353.96 - lr: 0.000013 - momentum: 0.000000
2023-10-18 16:11:09,013 epoch 7 - iter 30/152 - loss 0.43107976 - time (sec): 0.68 - samples/sec: 9315.62 - lr: 0.000013 - momentum: 0.000000
2023-10-18 16:11:09,355 epoch 7 - iter 45/152 - loss 0.43213838 - time (sec): 1.02 - samples/sec: 9195.84 - lr: 0.000012 - momentum: 0.000000
2023-10-18 16:11:09,677 epoch 7 - iter 60/152 - loss 0.43004851 - time (sec): 1.34 - samples/sec: 9259.06 - lr: 0.000012 - momentum: 0.000000
2023-10-18 16:11:10,021 epoch 7 - iter 75/152 - loss 0.43143165 - time (sec): 1.69 - samples/sec: 9178.06 - lr: 0.000012 - momentum: 0.000000
2023-10-18 16:11:10,343 epoch 7 - iter 90/152 - loss 0.42030296 - time (sec): 2.01 - samples/sec: 9080.88 - lr: 0.000011 - momentum: 0.000000
2023-10-18 16:11:10,670 epoch 7 - iter 105/152 - loss 0.41714489 - time (sec): 2.34 - samples/sec: 9168.85 - lr: 0.000011 - momentum: 0.000000
2023-10-18 16:11:10,989 epoch 7 - iter 120/152 - loss 0.41080530 - time (sec): 2.66 - samples/sec: 9172.11 - lr: 0.000011 - momentum: 0.000000
2023-10-18 16:11:11,304 epoch 7 - iter 135/152 - loss 0.40597047 - time (sec): 2.97 - samples/sec: 9266.47 - lr: 0.000010 - momentum: 0.000000
2023-10-18 16:11:11,630 epoch 7 - iter 150/152 - loss 0.40237893 - time (sec): 3.30 - samples/sec: 9282.50 - lr: 0.000010 - momentum: 0.000000
2023-10-18 16:11:11,674 ----------------------------------------------------------------------------------------------------
2023-10-18 16:11:11,674 EPOCH 7 done: loss 0.3989 - lr: 0.000010
2023-10-18 16:11:12,189 DEV : loss 0.34827205538749695 - f1-score (micro avg)  0.3443
2023-10-18 16:11:12,195 saving best model
2023-10-18 16:11:12,228 ----------------------------------------------------------------------------------------------------
2023-10-18 16:11:12,561 epoch 8 - iter 15/152 - loss 0.39763025 - time (sec): 0.33 - samples/sec: 9434.85 - lr: 0.000010 - momentum: 0.000000
2023-10-18 16:11:12,887 epoch 8 - iter 30/152 - loss 0.39423381 - time (sec): 0.66 - samples/sec: 9268.55 - lr: 0.000009 - momentum: 0.000000
2023-10-18 16:11:13,213 epoch 8 - iter 45/152 - loss 0.40063428 - time (sec): 0.98 - samples/sec: 9205.29 - lr: 0.000009 - momentum: 0.000000
2023-10-18 16:11:13,548 epoch 8 - iter 60/152 - loss 0.39201927 - time (sec): 1.32 - samples/sec: 9205.39 - lr: 0.000009 - momentum: 0.000000
2023-10-18 16:11:13,904 epoch 8 - iter 75/152 - loss 0.39276233 - time (sec): 1.67 - samples/sec: 9062.29 - lr: 0.000008 - momentum: 0.000000
2023-10-18 16:11:14,257 epoch 8 - iter 90/152 - loss 0.39413049 - time (sec): 2.03 - samples/sec: 8991.94 - lr: 0.000008 - momentum: 0.000000
2023-10-18 16:11:14,598 epoch 8 - iter 105/152 - loss 0.39315056 - time (sec): 2.37 - samples/sec: 9030.40 - lr: 0.000008 - momentum: 0.000000
2023-10-18 16:11:14,938 epoch 8 - iter 120/152 - loss 0.39718127 - time (sec): 2.71 - samples/sec: 9105.15 - lr: 0.000007 - momentum: 0.000000
2023-10-18 16:11:15,275 epoch 8 - iter 135/152 - loss 0.39900868 - time (sec): 3.05 - samples/sec: 9122.55 - lr: 0.000007 - momentum: 0.000000
2023-10-18 16:11:15,604 epoch 8 - iter 150/152 - loss 0.38543416 - time (sec): 3.37 - samples/sec: 9100.19 - lr: 0.000007 - momentum: 0.000000
2023-10-18 16:11:15,642 ----------------------------------------------------------------------------------------------------
2023-10-18 16:11:15,643 EPOCH 8 done: loss 0.3853 - lr: 0.000007
2023-10-18 16:11:16,160 DEV : loss 0.3415715992450714 - f1-score (micro avg)  0.3607
2023-10-18 16:11:16,166 saving best model
2023-10-18 16:11:16,198 ----------------------------------------------------------------------------------------------------
2023-10-18 16:11:16,550 epoch 9 - iter 15/152 - loss 0.37449454 - time (sec): 0.35 - samples/sec: 9501.05 - lr: 0.000006 - momentum: 0.000000
2023-10-18 16:11:16,873 epoch 9 - iter 30/152 - loss 0.35152597 - time (sec): 0.67 - samples/sec: 9574.63 - lr: 0.000006 - momentum: 0.000000
2023-10-18 16:11:17,192 epoch 9 - iter 45/152 - loss 0.36547659 - time (sec): 0.99 - samples/sec: 9754.90 - lr: 0.000006 - momentum: 0.000000
2023-10-18 16:11:17,530 epoch 9 - iter 60/152 - loss 0.35377707 - time (sec): 1.33 - samples/sec: 9596.35 - lr: 0.000005 - momentum: 0.000000
2023-10-18 16:11:17,857 epoch 9 - iter 75/152 - loss 0.37707230 - time (sec): 1.66 - samples/sec: 9577.50 - lr: 0.000005 - momentum: 0.000000
2023-10-18 16:11:18,184 epoch 9 - iter 90/152 - loss 0.38457408 - time (sec): 1.98 - samples/sec: 9608.64 - lr: 0.000005 - momentum: 0.000000
2023-10-18 16:11:18,499 epoch 9 - iter 105/152 - loss 0.38246205 - time (sec): 2.30 - samples/sec: 9499.41 - lr: 0.000004 - momentum: 0.000000
2023-10-18 16:11:18,821 epoch 9 - iter 120/152 - loss 0.37841646 - time (sec): 2.62 - samples/sec: 9440.01 - lr: 0.000004 - momentum: 0.000000
2023-10-18 16:11:19,157 epoch 9 - iter 135/152 - loss 0.38219358 - time (sec): 2.96 - samples/sec: 9318.53 - lr: 0.000004 - momentum: 0.000000
2023-10-18 16:11:19,474 epoch 9 - iter 150/152 - loss 0.37840206 - time (sec): 3.27 - samples/sec: 9363.98 - lr: 0.000004 - momentum: 0.000000
2023-10-18 16:11:19,513 ----------------------------------------------------------------------------------------------------
2023-10-18 16:11:19,513 EPOCH 9 done: loss 0.3758 - lr: 0.000004
2023-10-18 16:11:20,019 DEV : loss 0.33774086833000183 - f1-score (micro avg)  0.3705
2023-10-18 16:11:20,025 saving best model
2023-10-18 16:11:20,058 ----------------------------------------------------------------------------------------------------
2023-10-18 16:11:20,382 epoch 10 - iter 15/152 - loss 0.29312128 - time (sec): 0.32 - samples/sec: 9094.57 - lr: 0.000003 - momentum: 0.000000
2023-10-18 16:11:20,702 epoch 10 - iter 30/152 - loss 0.34740243 - time (sec): 0.64 - samples/sec: 9449.94 - lr: 0.000003 - momentum: 0.000000
2023-10-18 16:11:21,037 epoch 10 - iter 45/152 - loss 0.33882855 - time (sec): 0.98 - samples/sec: 9418.48 - lr: 0.000002 - momentum: 0.000000
2023-10-18 16:11:21,363 epoch 10 - iter 60/152 - loss 0.34352526 - time (sec): 1.30 - samples/sec: 9374.66 - lr: 0.000002 - momentum: 0.000000
2023-10-18 16:11:21,701 epoch 10 - iter 75/152 - loss 0.34753687 - time (sec): 1.64 - samples/sec: 9215.78 - lr: 0.000002 - momentum: 0.000000
2023-10-18 16:11:22,038 epoch 10 - iter 90/152 - loss 0.35076983 - time (sec): 1.98 - samples/sec: 9267.92 - lr: 0.000002 - momentum: 0.000000
2023-10-18 16:11:22,380 epoch 10 - iter 105/152 - loss 0.35893496 - time (sec): 2.32 - samples/sec: 9208.24 - lr: 0.000001 - momentum: 0.000000
2023-10-18 16:11:22,721 epoch 10 - iter 120/152 - loss 0.35889586 - time (sec): 2.66 - samples/sec: 9224.37 - lr: 0.000001 - momentum: 0.000000
2023-10-18 16:11:23,061 epoch 10 - iter 135/152 - loss 0.35917971 - time (sec): 3.00 - samples/sec: 9205.51 - lr: 0.000001 - momentum: 0.000000
2023-10-18 16:11:23,397 epoch 10 - iter 150/152 - loss 0.36218218 - time (sec): 3.34 - samples/sec: 9180.46 - lr: 0.000000 - momentum: 0.000000
2023-10-18 16:11:23,438 ----------------------------------------------------------------------------------------------------
2023-10-18 16:11:23,438 EPOCH 10 done: loss 0.3616 - lr: 0.000000
2023-10-18 16:11:23,957 DEV : loss 0.33346304297447205 - f1-score (micro avg)  0.3808
2023-10-18 16:11:23,963 saving best model
2023-10-18 16:11:24,024 ----------------------------------------------------------------------------------------------------
2023-10-18 16:11:24,025 Loading model from best epoch ...
2023-10-18 16:11:24,104 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-18 16:11:24,588 
Results:
- F-score (micro) 0.3636
- F-score (macro) 0.2306
- Accuracy 0.2285

By class:
              precision    recall  f1-score   support

       scope     0.3536    0.4238    0.3855       151
        work     0.1533    0.2421    0.1878        95
        pers     0.6375    0.5312    0.5795        96
         loc     0.0000    0.0000    0.0000         3
        date     0.0000    0.0000    0.0000         3

   micro avg     0.3358    0.3966    0.3636       348
   macro avg     0.2289    0.2394    0.2306       348
weighted avg     0.3711    0.3966    0.3784       348

2023-10-18 16:11:24,589 ----------------------------------------------------------------------------------------------------